ホーム    このサイトについて    論文の投稿について        English    図書館    茨城大学    問合せ

茨城大学機関リポジトリ >
教育学部 >
科研等報告書(教育学部) >

 
タイトル :アレー効果を伴う人口動態論から由来する非線形楕円型境界値問題の研究
別言語のタイトル :Study on nonlinear elliptic boundary value problems with Allee effects, arising in population dynamics
著者 :梅津, 健一郎
別言語の著者 :UMEZU, Kenichiro
作成日 :2010-4-30
要約(Abstract) :研究成果の概要(和文):数理生物学に現れる人口動態モデルである非線形楕円型境界値問題の正値解の存在及び多重性を変分法と分岐理論を用いて示した.特に,分岐理論を援用して得た結果では,生物の条件的生存を導くアレー効果を示唆する分岐曲線の存在を示すことができた.また並行して,線形化固有値問題の主固有値を考察することによって,内包する係数に関する分岐点の依存性を調べ,分岐点が発散するための必要条件と十分条件を精密に与えた. 研究成果の概要(英文):We prove the existence and multiplicity of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics, by using a variational technique and the bifurcation theory. Especially, we obtain some type of bifurcation of positive solutions, which suggests that the bifurcation component is derived from the Allee effect from population dynamics, implying a conditional persistence of species. We also discuss the dependence of the bifurcation point on coefficients included in the problem and give necessary and sufficient conditions for the blowing-up of the bifurcation point, by considering the positive principal eigenvalue of the associated, linearized eigenvalue problem.
収録種別 :科研等報告書
公開者・出版者 :茨城大学
URI :http://hdl.handle.net/10109/1393
出現コレクション:科研等報告書(教育学部)

登録ファイル

ファイル 記述 サイズフォーマット
20100088.pdf199KbAdobe PDF見る/開く