タイトル

Note on the number of semistar operations, XIV

著者

MATSUDA, Ryuki

引用

Mathematical journal of Ibaraki University, 40: 11-17

発行日

2008-05

URL

http://hdl.handle.net/10109/722

権利

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術情報リポジトリ

お問合せ先

茨城大学学術企画部学術情報課（図書館） 情報支援係

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html

ROSEリポジトリいばらき（茨城大学学術情報リポジトリ）
Note on the number of semistar operations, XIV

Ryûki Matsuda*

Abstract

We determine conditions for a grading monoid to have only a finite number of semistar operations.

This is a note on the number of semistar operations, and is a continuation of [M3]. The notions of star operations, semistar operations, and their Kronecker function rings of integral domains have been well known. We refer to Fontana-Loper([FL]) and its references for them. Let G be a torsion-free abelian additive group, and let S be an additively closed subset containing 0 of G. Then S is called a grading monoid (or, a g-monoid). We refer to [M1] for notions of star operations, semistar operations, and their Kronecker function rings for g-monoids.

Let $\Sigma(S)$ be the set of star operations on S, and let $\Sigma_0(S)$ be the set of semistar operations on S. In §1 of this paper, we are interested in the cardinalities $|\Sigma(S)|$, and $|\Sigma_0(S)|$, especially, in when $|\Sigma_0(S)| < \infty$? We will determine conditions for $|\Sigma_0(S)| < \infty$. §2 is an another note on $|\Sigma'_0(D)|$ for i-local domains D.

§1 The conditions for $|\Sigma'_0(S)| < \infty$

Let G be the quotient group of S, and let \bar{S} be the integral closure of S. If S is a group, we have $|\Sigma_0(S)| = 1$ trivially. Thus, throughout the section, let S be a g-monoid which is not a group, let M (resp. N) be the maximal ideal of S (resp. \bar{S}), let H (resp. L) be the group of units of S (resp. \bar{S}). In [M2, Theorem 14] we proved the following fact: Assume that $M = N$. Then we have that $|\Sigma'_0(S)| < \infty$ if and only if $\dim(S) < \infty$, \bar{S} is a valuation semigroup, and \bar{S}/S is a finite set modulo H.

In this section, we will prove the following,

Theorem 1 Assume that $M \neq N$. Then the following conditions are equivalent.

1. $|\Sigma'_0(S)| < \infty$.
2. $\dim(S) < \infty$, \bar{S} is a valuation semigroup, and \bar{S}/S is a finite set modulo H.

1.1 (cf. [M2, Proposition 1]) Let V be a valuation semigroup with maximal ideal N. If N is a principal ideal of V, then $|\Sigma(V)| = 1$, and if N is not a principal ideal N. If N is a principal ideal of V, then $|\Sigma(V)| = 1$, and if N is not a principal
ideal of V, then $|\Sigma(V)| = 2$.

1.2 Assume that $|\Sigma'(S)| < \infty$. Then there is only a finite number of oversemigroups of S.

Proof. Let T be an oversemigroup of S. Then there arises a semistar operation $I \mapsto I + T$ on S.

1.3 Assume that $|\Sigma'(S)| < \infty$. Then L/H is a finite group.

Proof. If L/H is an infinite group, then there is an infinite number of subgroups K of L containing H. Set $T = K \cup N$. Then T is an oversemigroup of S.

Let A be a subset of G. Then $S[A]$ denotes the oversemigroup of S generated by A.

1.4 Assume that $|\Sigma'(S)| < \infty$. Then $\dim(S) < \infty$, S is a valuation semigroup, and $\bar{S} = S$ is a finite set modulo H.

Proof. Suppose that $\dim(S) = \infty$. Then there is an infinite number of oversemigroups of S. Then $|\Sigma'(S)| = \infty$ by (1.2).

Suppose that \bar{S} is not a valuation semigroup. Then there is an element $x \in G - \bar{S}$ such that $-x \notin \bar{S}$. We have $S[2^n x] \supset S[2^{n+1} x]$ for each positive integer n. Then $|\Sigma'(S)| = \infty$ by (1.2).

Conferring (1.3), let $\alpha_1, \cdots, \alpha_k$ be a complete representative system of L modulo H. Let v be a valuation belonging to \bar{S}. By (1.2), we have $\{S[x] \mid x \in S - S\} = \{S[x_1], \cdots, S[x_m]\}$ for some positive integer m. Let $x \in \bar{S} - S$. Then $S[x] = S[x_i]$, for some i. Hence $v(x) = v(x_i)$. Then $x - x_i = \alpha_j + h$ for some j and $h \in H$.

We have seen that (1) implies (2) in Theorem 1.

Thus, in the rest of the section, we assume that $M \neq N$, $\dim(S) < \infty$, \bar{S} is a valuation semigroup, and $\bar{S} = S$ is a finite set modulo H. Set $\bar{S} = V$, let v be a valuation belonging to V, and let Γ be the value group of v.

1.5 (1) Let $I \in F'(S)$ so that $v(I)$ is not bounded below. Then $I = G$.

(2) $F'(S) = F(S) \cup \{G\}$.

(3) Each star operation \ast on S can be extended uniquely to a semistar operation on S.

(4) $|\Sigma(S)| \leq |\Sigma'(S)|$.

(5) L/H is a finite group.

(6) Let $I \in F(S)$ so that there does not exist $\inf v(I)$. Then we have $\{x \in G \mid v(x) \geq v(a)\}$ for some $a \in I \subseteq I$.

Proof. (1) Let $x \in G$. There are x_1, x_2, x_3, \cdots in I so that $v(x) > v(x_1) > \cdots$. Then $x - x_i \in N$ for each i, and $x - x_i \notin x - x_j$ modulo H for each $i < j$. It follows that $x - x_n \in S$ for some n, and hence $x \in I$.
(2) follows from (1).
(3) follows from (2).
(4) follows from (3).
(5) follows from the fact that $V - S$ is a finite set modulo H.
(6) Suppose the contrary. There are $x \notin I$ and $a_0 \in I$ such that $v(a_0) \leq v(x)$.
There are elements a_1, a_2, a_3, \cdots in I so that $v(a_0) > v(a_1) > v(a_2) > \cdots$. Then $x - a_i \in V - S$ for each i, and $x - a_i \neq x - a_j$ modulo H for each $i < j$; a contradiction.

Let $\alpha_1, \cdots, \alpha_n$ be a complete representative system of L modulo H. And let z_1, \cdots, z_n be a complete representative system of $N - M$ modulo H. We may assume that $v(z_1) \leq \cdots \leq v(z_n)$.

(1.6) Let T be an oversemigroup of S with $T \in F(S)$, and let $*$ be either a star operation or a semistar operation on S. Then T^* is an oversemigroup of S.

Proof. Let $x, y \in T^*$. Then $x + y \in T^* + T^* \subset (T^* + T^*)^* = (T + T)^* = T^*$.

(1.7) There is min $v(N)$.

Proof. Suppose that $0 < v(s) < v(z_1)$ for some $s \in S$. We have $z_1 - s \equiv z_i$ modulo H for some i. Then $v(z_1) = v(z_i)$, and hence $v(s) = 0$; a contradiction.

Let $x \in N - M$. Then $x \equiv z_i$ modulo H for some i. Hence $v(x) = v(z_i) \geq v(z_1)$.

We may assume that is the rank 1 convex subgroup of Γ. Take an element $\pi \in N$ such that $v(\pi) = 1$.

(1.8) Let T be an oversemigroup of S. Then $T \supset V$ or $T \subset V$.

Proof. Assume that $T \not\subset V$, and take an element $x_0 \in T - V$. Then $-x_0 \in N$.
Let $x \in V$. We have $x - kx_0 \in V$ for each $k \geq 0$. If $0 < i < j$, then $x - ix_0 \neq x - jx_0$ modulo H. Therefore $x - mx_0 \in S$ for some m. Then $x \in S[x_0]$, and hence $V \subset T$.

(1.9) There is only a finite number of oversemigroups of S.

Proof. It follows from (1.8), $\dim(V) < \infty$, and the hypothesis that $V - S$ is a finite set modulo H.

(1.10) Let $\dim(S) = 1$. Then $V^* = V$, that is, V is a divisorial fractional ideal of S.

Proof. V^* is an oversemigroup of V by (1.6), and we have $\dim(V) = 1$. Suppose that $V^* \neq V$. Then $V^* = G$. Take an element $x_0 \in M$. Let $1 \leq i \leq b$, and let $0 < j < k$. Then $z_i + jx_0 \neq z_i + kx_0$ modulo H. Hence there is m_i so that $z_i + mx_0 \in S$ for each $m \geq m_i$, that is, $z_i \in (-mx_0)$. Similarly, there is n_j so that $\alpha_j \in (-mx_0)$ for each $m \geq n_j$. Let $\max\{m_i, n_j \mid i, j\} = m_0$. Then $V \subset (-mx_0)$ for each $m \geq m_0$. Since $V^* = \cap\{x \mid (x) \supset V\}$, we have $(-mx_0) = G$ for each $m \geq m_0$.
this is clearly impossible.

(1.11) We have $V^c = V$.

Proof. By (1.10), we may assume that $\dim(S) \geq 2$. Let Q be a prime ideal of V with $\text{ht}(Q) = \text{ht}(N) - 1$, and let $P = S \cap Q$, where $\text{ht}(N)$ (resp. $\text{ht}(Q)$) means the height of N (resp. the height of Q). Suppose that $V^c \neq V$. Then $V^c \supseteq V_Q$. Take an element $x_0 \in M - P$. The similar argument to the proof of (1.10) shows that $(-mx_0) \supseteq V_Q$ for all sufficiently large m. Since $(m+1)x_0 \notin Q$, we have $-(m+1)x_0 \in V_Q \subset (-mx_0)$, and hence $-x_0 \in S$; a contradiction.

(1.12) Let $I \in F(S)$ so that there does not exist $\inf v(I)$. Then $I^c = I$.

Proof. Suppose that $I^c \supseteq I$. Take an element $x \in I^c - I$. Then $v(x)$ is a lower bound of $v(I)$ by (1.5)(6). There is a lower bound $v(y)$ of $v(I)$ with $v(x) < v(y)$. Set $I - y = J$. Since $J \subset V$, we have $J^c \subset V$ by (1.11). We have $x - y \in I^c = J^c$, and $v(x - y) = 0$. Hence $J^c \not\subset V$; a contradiction.

(1.13) $|\Sigma(S)| < \infty$.

Proof. Let $I \in F(S)$ with $S \subset I \subset V$. Then I is generated on S by a subset of $\{a_i, z_j \mid i, j\}$. Therefore the set $\{I \in F(S) \mid S \subset I \subset V\} = X$ is a finite set.

Let $* \in \Sigma(S)$ and let $I \in X$. Set $I^* = g_*(I)$. Then g_* is a mapping from X to X by (1.11), that is, $g_* \in X^X$. Then g is a mapping from $\Sigma(S)$ to X^X.

Let $*, *' \in \Sigma(S), I \in F(S)$, and assume that $g_* = g_{*'}$. If there does not exist $\inf v(I)$, then $I^* = I'^* = I$ by (1.12). If there is $\inf v(I) = v(x)$, then $\min v(I - x) = 0$ by (1.7). Hence $S \subset I - y \subset V$ for some $y \in I$. Since $g_*, g_{*'}$, we have $(I - y)^* = (I - y)^{*'}$, and hence $I^* = I'^*$. We have proved that $* = *'$, and hence g is an injection. It follows that $|\Sigma(S)| < \infty$.

(1.14) Let T be an oversemigroup of S with $T \subset V$. Then $|\Sigma(T)| < \infty$.

Proof. Let M' be the maximal ideal of T, and let H' be the group of units of T. We have that $T = V$, $\dim(T) = \dim(S) < \infty$, and L/H' is a finite group. If $M' = N$, we have $|\Sigma(T)| < \infty$ by [M2, Theorem 14], and hence $|\Sigma(T)| < \infty$ by (1.5)(4). If $M' \neq N$, we have $|\Sigma(T)| < \infty$ by (1.13).

(1.15) Let T be an oversemigroup of S. Then $|\Sigma(T)| < \infty$.

Proof. We may assume that $T \subset V$ by (1.14). Then $T \supset V$ by (1.8). Then $|\Sigma(T)| \leq 2$ by (1.1).

Conferring (1.9), let $\{T_1, \cdots, T_c\}$ be the set of oversemigroups of S. For each $1 \leq i \leq c, * \in \Sigma(T_i)$ and $I \in F(S)$, set $(I + T_i)^* = I^\sigma(*)$ and $G = G^\sigma(*)$.

(1.16) (1) If $i \neq j$, then $\Sigma(T_i) \cap \Sigma(T_j) = \emptyset$.
(2) There is a canonical mapping \(\sigma \) from \(\bigcup_{\mathcal{T}} \Sigma(T) \) to \(\Sigma'(S) \).

Proof. (1) We have \(F(T_i) \neq F(T_j) \), and \(\Sigma(T_i) \) (resp. \(\Sigma(T_j) \)) is a set of mappings from \(F(T_i) \) to \(F(T_i) \) (resp. from \(F(T_j) \) to \(F(T_j) \)).

(2) We see easily that \(\sigma(*) \) satisfies the conditions of a semistar operation on \(S \).

| (1.17) | The mapping \(\sigma \) is a bijection onto \(\Sigma'(S) \). |

Proof. Let \(* \in \Sigma'(S) \). Then \(S\sigma(*) = T_i \) for some \(T_i \). There is a star operation \(* : J \rightarrow J' \) on \(T_i \). Then we have \(\sigma(*) = T_i \).

| (1.18) | \(|\Sigma'(S)| < \infty \). |

Proof. It follows from (1.15), (1.16), and (1.17).

The proof of Theorem 1 is complete.

§2 Another note

In [M4], we determined conditions for \(|\Sigma'(D)| < \infty \) for any APVD (or, an almost pseudo-valuation domain) \(D \), and in §1, we determined conditions for \(|\Sigma'(S)| < \infty \) for any g-monoid \(S \). Every g-monoid that is not a group has a unique maximal ideal, and every APVD \(D \) has the property that \(D \) and its integral closure \(\bar{D} \) has a unique maximal ideal. We refer to [BH] for APVD’s. Thus it is natural to consider the class of domains \(D \) such that \(\bar{D} \) has a unique maximal ideal. We call such a domain an i-local domain. In §2, we will study \(|\Sigma'(D)| \) for i-local domains \(D \).

(2.1) Let \(D \) be an i-local domain. Assume that \(\bar{D} \) is a valuation domain with maximal ideal \(M \), \(v \) be a valuation belonging to \(\bar{D} \), and \(M^n \subset D \) for some positive integer \(n \). Then either \(D \) is a PVD (or, a pseudo-valuation domain), or there is \(\min v(M) \).

Proof. Suppose the contrary. Let \(0 \neq x \in M \). There are elements \(x_1, \ldots, x_n \in M \) such that \(v(x_1) > v(x_1) > \cdots > v(x_n) > 0 \). Then \(x = \frac{x_1}{x_1} \cdot \frac{x_2}{x_2} \cdots \frac{x_{n-1}}{x_{n-1}} \cdot \frac{x_n}{x_n} \in M^n \subset D \).

Hence \(D \) is a PVD; a contradiction.

Let \(D \) be a valuation domain with maximal ideal \(M \), let \(v \) be a valuation belonging to \(D \), and let \(\Gamma \) be the value group of \(v \). If there is \(\min v(M) \), then we may assume that \(M \) is the rank one convex subgroup of \(\Gamma \), and \(\min v(M) = 1 \in \bar{Z} \subset \Gamma \).

For, the rank one convex subgroup of \(\Gamma \) is isomorphic with the ordered group \(\bar{Z} \). Therefore \(\Gamma \) is order isomorphic with an ordered group \(\Gamma' \) the rank one convex subgroup of which is .
(2.2) Let D be an i-local domain with maximal ideal P, let M be the maximal ideal of D, and assume that $|\Sigma(D)| < \infty$. Then we have,

1. $\dim(D) < \infty$.
2. There is only a finite number of overrings of D.
3. $\bar{D} = V$ is a valuation domain.
4. V is a finitely generated D-module.
5. $V/M = K$ is a simple extension field of $D/P = k$ with $[K : k] < \infty$.
6. $V, M \in F(D)$.
7. $F'(D) = F(D) \cup \{q(D)\}$.

Proof. (1) follows from (2).
(2) If T is an overring of D, then there is a semistar operation $I \mapsto IT$ on D.
(3) Let $\{V_\lambda \mid \lambda \in \Lambda\}$ be the set of valuation overrings of D. Then we have $\bar{D} = \cap_\lambda V_\lambda$.
(4) \bar{D} is a finitely generated overring of D.
(5) There is only a finite number of intermediate fields between k and K.
(6) There are elements $x_1, \ldots, x_n \in V$ such that $V = \sum_1^n DX_i$ for some positive integer n.
(7) There is $0 \neq d \in D$ such that $dV \subset D$. Let v be a valuation belonging to V. Let $I \in F'(D)$ so that $v(I)$ is not bounded below. Let $x \in q(D)$. There is $a \in I$ such that $v(a) < v(x)$. Then $x \in aV \subset (a/d)D \subset (1/d)I$. Hence $q(D) \subset (1/d)I$, and hence $I = q(D)$.

(2.3) Let D be an i-local domain such that $\bar{D} = V$ is a valuation ring, and let M be the maximal ideal of D. Assume that $M^n \subset D$ for some positive integer n. Then we have,

1. $F'(D) = F(D) \cup \{q(D)\}$.
2. Let T be an overring of D. Then either $T \supset V$ or $T \subset V$.
3. Let $\Sigma'_1 = \{* \in \Sigma'(D) \mid D^* \supset V\}$. Then there is a canonical bijection from $\Sigma'(V)$ onto Σ'_1.
4. Let $\Sigma'_2 = \{* \in \Sigma'(D) \mid D^* \not\subset V\}$. Then $\Sigma'(D) = \Sigma'_1 \cup \Sigma'_2$.
5. Let $\{T_\lambda \mid \lambda \in \Lambda\}$ be the set of overrings T of D with $T \not\supset V$. Then there is a canonical bijection from the disjoint union $\bigcup_\lambda \Sigma(T_\lambda)$ onto Σ'_2.

Proof. (1) Similar to (2.2)(7).
(2) Assume that $T \not\subset V$, and take an element $x \in T - V$. We may assume that $1/x \in M^n$. Let $a \in V$. Then $a(1/x) \in P$, hence $a \in xP \subset T$.
(3) The map $* \mapsto \delta_D(*)$ gives a bijection from $\Sigma'(V)$ onto Σ'_1.
(4) follows from (1).
(5) Similar to (3).

(2.4) Let D be an i-local domain. Assume that $\bar{D} = V$ is a valuation ring with maximal ideal M, let \mathcal{K} be a complete representative system of V modulo M, v be a valuation belonging to V with value group Γ, assume that \mathcal{K} is the rank one convex subgroup of Γ, and $v(\pi) = 1 \in \bar{Z}$ for some $\pi \in \mathcal{V}$. Let $x \in q(D) - \{0\}$ with $v(x) \in \bar{Z}$. Let k be a positive integer with $k > v(x)$. Then x can be expressed uniquely as
\[x = \alpha_l \pi^l + \alpha_{l+1} \pi^{l+1} + \cdots + \alpha_{k-1} \pi^{k-1} + a \pi^k, \] where \(l = v(x) \) and each \(\alpha_i \in K \) with \(\alpha_l \not\equiv 0 \pmod{M} \) and \(a \in V \).

Proof. Since \(\frac{x}{\pi} \) is a unit of \(V \), we have \(\frac{x}{\pi_l} \equiv \alpha_l \pmod{M} \) for a unique \(0 \not\equiv \alpha_l \in K \).

(2.5) Proposition Let \(D \) be an \(i \)-local domain with maximal ideal \(P \), and assume that \(D = V \) is a valuation ring with maximal ideal \(M \), \(v \) be a valuation belonging to \(V \) with the value group \(\Gamma \). Assume that \(D \supset M^3 \). Then,

1. \(D \) is either a PVD or, we may assume that \(K \) is the rank one convex subgroup of \(\Gamma \).
2. If \(D/P = V/M \), then \(D \) is an APVD.

Proof. (1) follows from (2.1).

(2) Suppose the contrary. Then we may apply (2.4), and we may assume that \(K \subset D \). Since \(D \) is not an APVD, we may choose \(x \in P - M^3 \). If \(v(x) = 1 \), then \(x^2 \in P - M^3 \) and \(x^2 \in M^2 \). Hence we may assume that \(v(x) = 2 \). We have \(x = \alpha \pi^2 + a \pi^3 \) for \(\alpha \in K \) and \(a \in V \). Since \(\alpha \in D - P \), we have \(\pi^2 \in P \), and hence \(M^2 \subset P \). Since \(D \) is not an APVD, we may choose \(x \in P - M^2 \). Then \(\pi \in P \), and hence \(M = P \); a contradiction.

References

