<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>The index and co-index of the twisted tangent bundle over projective spaces</td>
</tr>
<tr>
<td>Author(s)</td>
<td>TANAKA, Ryuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 37: 35-38</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3104</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
The index and co-index of the twisted tangent bundle over projective spaces

RYUICHI TANAKA*

ABSTRACT. We determine the index and co-index of the twisted tangent bundle of projective spaces. We also discuss the stability of them, and determine the set of integers that can be realized as the stable co-index of a vector bundle over the projective space.

1. Introduction.

Let \(\alpha \) be a finite-dimensional real vector bundle over a CW complex \(B \), and let \(S(\alpha) \) be its sphere bundle with respect to some metric on \(\alpha \). We regard \(S(\alpha) \) as a \(\mathbb{Z}/2 \)-space by the antipodal map on each fibre. Then, the index of \(\alpha \), denoted \(\text{ind} \alpha \), is defined to be the largest integer \(k \) for which there exists a \(\mathbb{Z}/2 \)-map from \(S^{k-1} \) to \(S(\alpha) \). Here, \(S^{k-1} \) also is equipped with a \(\mathbb{Z}/2 \)-action by the antipodal map. As a dual notion to the index, the co-index of \(\alpha \), denoted \(\text{co-ind} \alpha \), is defined to be the smallest integer \(k \) for which there exists a \(\mathbb{Z}/2 \)-map from \(S(\alpha) \) to \(S^{k-1} \). If there exist no such maps, we define \(\text{co-ind} \alpha \) as \(\infty \). When \(B \) is a finite complex, \(\text{co-ind} \alpha \) is finite for any \(\alpha \). By the Borsuk-Ulam theorem, \(\text{ind} \alpha \) is not greater than \(\text{co-ind} \alpha \).

In this paper, we calculate the index and co-index of the twisted tangent bundle of the real projective space \(\mathbb{R}P^n \). Let \(\tau \) denote the tangent bundle of \(\mathbb{R}P^n \), and let \(\xi \) denote the canonical line bundle over \(\mathbb{R}P^n \). We call \(\tau \otimes \xi \) the twisted tangent bundle of \(\mathbb{R}P^n \). For the tangent bundle \(\tau \), we already know that \(\text{ind} \tau = n \), since the index of the tangent bundle of any closed manifold is equal to its dimension [CF1, Theorem 6.11]. As for the co-index of \(\tau \), it is known that \(\text{co-ind} \tau \) is equal to \(l(n) \) \((n \neq 1, 3, 7) \) or \(l(n) - 1 \) \((n = 1, 3, 7) \), where \(l(n) \) denotes the smallest integer \(m \) such that \(\mathbb{R}P^n \) can be immersed in \(\mathbb{R}^m \) [AGJ, T1].

We shall prove the following results in which the \(k \)-dimensional trivial bundle is denoted simply by \(k \).

Theorem 1.1. For \(\tau \otimes \xi \), the twisted tangent bundle of \(\mathbb{R}P^n \), we have \(\text{co-ind} (\tau \otimes \xi + k) = n + 1 + k \) for any \(k \geq 0 \).
Theorem 1.2. For $\tau \otimes \xi$, the twisted tangent bundle of $\mathbb{R}P^n$, we have the following.

1. If n is odd, then $\text{ind}(\tau \otimes \xi) = n + 1$ and $\text{ind}(\tau \otimes \xi + k) = n + k$ for $k \geq 1$.
2. If n is even, then $\text{ind}(\tau \otimes \xi + k) = n + k$ for any $k \geq 0$.

For a vector bundle α, in general, we call α to be CI-stable if the equality $\text{co-ind}(\alpha + k) = \text{co-ind} \alpha + k$ holds for any positive integer k. Likewise we call α to be I-stable if $\text{ind}(\alpha + k) = \text{ind} \alpha + k$ for any positive integer k. We have the following corollaries.

Corollary 1.3. $\tau \otimes \xi$ is CI-stable.

Corollary 1.4.

1. If n is odd, then $\tau \otimes \xi$ is not I-stable but $\tau \otimes \xi + 1$ turns to be I-stable.
2. If n is even, then $\tau \otimes \xi$ is I-stable.

As for τ, the tangent bundle of $\mathbb{R}P^n$, it is not known whether τ is CI-stable, though the equality $\text{co-ind}(\tau + 1) = \text{co-ind} \tau + 1$ holds as shown in [T1, Theorem 3.7]. On the other hand, τ is I-stable, since the tangent bundle of any closed manifold is known to be I-stable [T2, Theorem 4.6]. Also, it is to be noted that ξ is not I-stable, but CI-stable [T1, Theorem 4.1].

For α, a vector bundle over a finite complex B, we can define the stable co-index of α, denoted $\text{co-ind}^s(\alpha)$, as

$$\text{co-ind}^s(\alpha) = \lim_{k} \{ \text{co-ind}(\alpha + k) - \text{dim}(\alpha + k) \}.$$

This limit always exists since $0 \leq \text{co-ind}(\alpha + 1) - \text{dim}(\alpha + 1) \leq \text{co-ind} \alpha - \text{dim} \alpha$ (see [T1, Lemma 3.1]). Likewise we define the stable index $\text{inds}(\alpha)$. For example, if α is stably trivial, then, $\text{co-ind}^s(\alpha) = \text{inds}(\alpha) = 0$. Also, we know that $\text{co-ind}^s(\xi) = n$ and $\text{inds}(\xi) = 0$ from [T1, Theorem 4.1]. The above theorems imply $\text{co-ind}^s(\tau \otimes \xi) = 1$ and $\text{inds}(\tau \otimes \xi) = 0$. For the m-fold sum of the twisted tangent bundle $\tau \otimes \xi$, we shall prove the following theorem.

Theorem 1.5. If $m \leq n$, then $\text{co-ind}^s(m \cdot \tau \otimes \xi) = m$.

If α is stably equivalent to α', it is clear that $\text{co-ind}^s(\alpha) = \text{co-ind}^s(\alpha')$. So, co-ind^s can be considered as a function from $KO(B)$ to \mathbb{Z}^+, the set of non-negative integers. Since $\text{co-ind} \alpha \leq \text{dim} \alpha + \text{dim} B$ ([T1, Lemma 3.1]), we have $\text{co-ind}^s(\alpha) \leq \text{dim} B$ in general. Thus, $\text{dim} B$ is an upper bound of the image of the function co-ind^s. From Theorem 1.5, we obtain the following corollary.

Corollary 1.6. The image of the function $\text{co-ind}^s : KO(\mathbb{R}P^n) \rightarrow \mathbb{Z}^+$ is equal to the set $\{0, 1, 2, \cdots , n\}$.

Thus, over $\mathbb{R}P^n$, any non-negative integer not greater than $\text{dim} \mathbb{R}P^n$ can be realized as the stable co-index of a vector bundle.

2. Proof of the theorems.

Let B be a finite complex and α be a real vector bundle over B. We define the ν-dimension of α to be the smallest integer k for which there is a k-dimensional
vector bundle β with $\alpha + \beta$ trivial, and we denote it by ν-$\dim \alpha$. The ν-dimension of α is closely related to the geometric dimension of $-\alpha$, but they slightly differ in general (see examples in [T2]). The inequalities g-$\dim (-\alpha) \leq \nu$-$\dim \alpha \leq \dim B$ hold generally. We easily see that \co-$\dim \alpha \leq \dim \alpha + \nu$-$\dim \alpha$.

For a virtual vector bundle α, we denote by ω-$\dim \alpha$ the largest integer k for which the kth Stiefel-Whitney class $w_k(\alpha)$ is not zero. Then it is known that \co-$\dim \alpha \geq \dim \alpha + \omega$-$\dim (-\alpha)$ and the following theorem holds.

Theorem 2.1 ([T2, Theorem 2.5]). Let α be a real vector bundle over a finite complex B, and suppose that the equality ω-$\dim (-\alpha) = \nu$-$\dim \alpha$ holds. Then,

1. \co-$\dim \alpha = \dim \alpha + \nu$-$\dim \alpha$.
2. α is CI-stable.

Now, we prove Theorem 1.1 and Theorem 1.5.

Proof of Theorem 1.1 and 1.5.

Since $\tau + 1 \cong (n + 1)\xi$, we have $\tau \otimes \xi + \xi \cong n + 1$. Hence, ν-$\dim (\tau \otimes \xi) \leq 1$. We also have $W(\tau \otimes \xi) = W(\xi) = 1 + t$ where W is the total Stiefel-Whitney class and t is the generator of $H^*(\mathbb{R}P^n; \mathbb{Z}/2)$. Hence, ν-$\dim (-\tau \otimes \xi) = 1$. Since ω-$\dim (-\alpha) \leq \nu$-$\dim \alpha$ in general, we have ω-$\dim (-\tau \otimes \xi) = \nu$-$\dim (\tau \otimes \xi) = 1$.

Therefore, from Theorem 2.1, we find that \co-$\dim (\tau \otimes \xi) = n + 1$, and also, $\tau \otimes \xi$ is CI-stable. Thus Theorem 1.1 follows. Our argument goes as well for the m-fold sum of the twisted tangent bundle $\tau \otimes \xi$. In fact, since $m \cdot (\tau \otimes \xi + m\xi \cong m(n + 1)$, we have ν-$\dim (m \cdot \tau \otimes \xi) \leq m$. On the other hand, since $W(-m \cdot \tau \otimes \xi) = W(m\xi) = (1 + t)^m$, we have ω-$\dim (-m \cdot \tau \otimes \xi) = m$ if $m \leq n$. Thus, if $m \leq n$, we see that ω-$\dim (-m \cdot \tau \otimes \xi) = \nu$-$\dim (m \cdot \tau \otimes \xi) = m$, and, from Theorem 2.1, it follows that $m \cdot \tau \otimes \xi$ is CI-stable and \co-$\dim (m \cdot \tau \otimes \xi) = m$. □

Next, we turn to the index. To prove Theorem 1.2, we use the following result in [T1].

Proposition 2.2 ([T1, Corollary 2.5]). Let α be a real vector bundle over $\mathbb{R}P^n$.

1. If $\dim \alpha > n$, then $\ind \alpha = \dim \alpha$.
2. If $\dim \alpha \leq n$ and α contains ξ as a subbundle, then $\ind \alpha = n + 1$.

Proof of Theorem 1.2.

In view of Proposition 2.2 (1), we have only to prove that $\ind (\tau \otimes \xi)$ is equal to $n + 1$ if n is odd, and n if n is even. Since $\ind \alpha \leq \co$-$\dim \alpha$, we clearly have $\ind (\tau \otimes \xi) \geq n$. Now, suppose that there is a $\mathbb{Z}/2$-map $f : S^n \to S(\tau \otimes \xi)$. Let $\hat{f} : \mathbb{R}P^n \to P(\tau \otimes \xi)$ be the map induced from f. Here, $P(\tau \otimes \xi)$ is the projective bundle associated to $\tau \otimes \xi$. Let $p : P(\tau \otimes \xi) \to \mathbb{R}P^n$ be the bundle projection. Let e denote the $\mathbb{Z}/2$-Euler class of the bundle $S(\tau \otimes \xi) \to P(\tau \otimes \xi)$. We consider the homomorphism $\hat{f}^* : H^*(P(\tau \otimes \xi); \mathbb{Z}/2) \to H^*(\mathbb{R}P^n; \mathbb{Z}/2)$. From the naturality of the Euler class, we have $\hat{f}^*(e) = t$, and so $\hat{f}^*(e^n) = t^n$, which is not zero. On the other hand, in $H^*(P(\tau \otimes \xi); \mathbb{Z}/2)$, we have the relation

$$e^n = \sum_{i=0}^{n} w_i e^{n-1},$$
where w_i's are the Stiefel-Whitney classes of $\tau \otimes \xi$ and $H^*(P(\tau \otimes \xi); \mathbb{Z}/2)$ is considered as a $H^*(\mathbb{R}P^n; \mathbb{Z}/2)$-module in an obvious way. Since $\tau \otimes \xi + \xi \cong n + 1$, we have $W(\tau \otimes \xi) = W(\xi)^{-1} = (1 + t)^{-1}$. Hence, we have the relation

$$e^n = t^n + t^{n-1}e + t^{n-2}e^2 + \cdots + te^{n-1}.$$

Applying \tilde{f}^*, we have

$$t^n = (p \circ \tilde{f})^*(t^n) + (p \circ \tilde{f})^*(t^{n-1})t + (p \circ \tilde{f})^*(t^{n-2})t^2 + \cdots + (p \circ \tilde{f})^*(t)t^{n-1}.$$

But the homomorphism $(p \circ \tilde{f})^* : H^*(\mathbb{R}P^n; \mathbb{Z}/2) \to H^*(\mathbb{R}P^n; \mathbb{Z}/2)$ is either identity or zero. The latter case is impossible since t^n is not zero. Therefore, we have $t^n = nt^n$. If n is even, this contradicts $t^n \neq 0$. Thus we have proved that $\text{ind}(\tau \otimes \xi)$ is equal to n if n is even.

Now, let n be odd. Then τ has a non-zero cross-section since it is orientable and its Euler class is zero. In other words, τ has a one-dimensional trivial bundle as a subbundle. Hence $\tau \otimes \xi$ has ξ as a subbundle. From Proposition 2.2 (2), it follows that $\text{ind}(\tau \otimes \xi) = n + 1$. This completes the proof. \hfill \square

REFERENCES

