<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A note on denominator ideals of linear fractional transforms of an anti-integral element over an integral domain</td>
</tr>
<tr>
<td>Author(s)</td>
<td>SATO, Junro; BABA, Kiyoshi; YOSHIDA, Ken-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 34: 29-31</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3090</td>
</tr>
<tr>
<td>Rights</td>
<td>このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。</td>
</tr>
</tbody>
</table>

お問合せ先

茨城大学学術情報リポジトリ

お問い合わせ先

茨城大学学術情報リポジトリ

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
A note on denominator ideals of linear fractional transforms of an anti-integral element over an integral domain

JUNRO SATO*, KIYOSHI BABA** AND KEN-ICHI YOSHIDA***

ABSTRACT. Let \(\alpha \) be an anti-integral element of degree \(t \) over an integral domain \(R \) and \(\varphi_\alpha(X) \) the minimal polynomial of \(\alpha \) over the quotient field of \(R \). Let \(\beta \) be a linear fractional transform of \(\alpha \), that is,

\[
\beta = \frac{ca - d}{a' - b} \quad (a, b, c, d \in R, ad - bc \in R^*)
\]

where \(R^* \) is the group of units of \(R \). First we describe \(I[\beta] \), the denominator ideal of \(\beta \), in terms of \(I[\alpha] \) and \(\varphi_\alpha(a, b) \) where \(\varphi_\alpha(X, Y) = X^t \varphi_\alpha(Y/X) \). Next we introduce the ideal \(I[\alpha] \) concerning integral property of \(\alpha \) and \(\alpha^{-1} \). Then we describe \(I[\beta] \) by using \(I[\alpha] \), \(\varphi_\alpha(a, b) \) and \(\varphi_\alpha(c, d) \).

Let \(R \) be an integral domain with quotient field \(K \) and \(R[X] \) a polynomial ring over \(R \) in an indeterminate \(X \). Let \(\alpha \) be an element of an algebraic field extension of \(K \) and \(\varphi_\alpha(X) \) the monic minimal polynomial of \(\alpha \) over \(K \) with \(\deg \varphi_\alpha = t \), and write \(\varphi_\alpha(X) = X^t + \eta_1X^{t-1} + \cdots + \eta_t, (\eta_1, \ldots, \eta_t \in K) \). We define \(I[\alpha] := \bigcap_i \{ R : \mathfrak{R} \} \) and \(J[\alpha] := I[\alpha](1, \eta_1, \ldots, \eta_t) \) where \(\{ R : \mathfrak{R} \} = \{ c \in R ; \mathfrak{R} \mathfrak{R} \in R \} \) and \((1, \eta_1, \ldots, \eta_t) \) is the \(R \)-module generated by \(1, \eta_1, \ldots, \eta_t \). An element \(\alpha \) is called an anti-integral element of degree \(t \) over \(R \) if \(\ker \pi = I[\alpha]\varphi_\alpha(X)R[X] \).

Set \(\varphi_\alpha(X, Y) = X^t \varphi_\alpha(Y/X) \). Since \(\alpha = (b\beta - d)/(a\beta - c) \), it is easily verified that

\[
\varphi_\beta(X) = \varphi_\alpha(a, b)^{-1} \varphi_\alpha(aX - c, bX - d).
\]

Our notation is standard and our general reference for unexplained terms is [2].

Received June 1, 2001. Revised October 12, 2001.

2000 Mathematics Subject Classification. Primary 13B02, Secondary 13G05.

Key words. denominator ideal, linear fractional transform, anti-integral element, super-primitive element.

* Southern Osaka University, Mihara, Minami-Kawachi, Osaka 587-8555, Japan.
 e-mail: [redacted]

** Department of Mathematics, Faculty of Education and Welfare Science, Oita University, Oita 870-1192 Japan.
 e-mail: [redacted]

*** Department of Applied Mathematics, Okayama University of Science, Rident-cho 1-1, Okayama 700-0005, Japan.
 e-mail: [redacted]
Theorem 1. Let R be an integral domain and α an algebraic element of degree t over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b, c, d \in R, ad - bc \in R^*, a\alpha - b \neq 0).$$

Then $I[\beta] = \varphi(\alpha, b)I[\alpha]$.

Proof. Since $I[\beta] = R[X] : R \varphi(X)$, we see that $\varphi(\alpha, b)I[\alpha] \subseteq I[\beta]$ by equality (1). Similarly, we have $\varphi(\alpha, c)I[\beta] \subseteq I[\alpha]$ because $\beta = (c\alpha - d)/(a\alpha - b)$. Set $u = bc - ad$. Then by equality (1) we get $\varphi(\alpha, c) = a^t \varphi(c/a) = u^t \varphi(\alpha, b)^{-1}$. Hence $I[\beta] \subseteq u^{-t} \varphi(\alpha, b)I[\alpha] = \varphi(\alpha, b)I[\alpha]$. Therefore $I[\beta] = \varphi(\alpha, b)I[\alpha]$. Q.E.D.

Let α be an anti-integral element of degree t over an integral domain R. Then α is integral over R if and only if $I[\alpha] = R$ by [3, Theorem 2.2]. Note that β is also an anti-integral element of degree t over R by [1, Theorem 4].

Corollary 2. Let R, α, β be the same as in Theorem 1 and assume that α is an anti-integral element over R. Then the following conditions are equivalent:

(i) β is integral over R.

(ii) $\varphi(\alpha, b)I[\alpha] = R$.

The proof is immediate from Theorem 1.

Note that, if $I[\alpha]$ is not a principal ideal of R, then β is not integral over R by Corollary 2.

Let α be an algebraic element of degree t over a Noetherian domain R. We say that α is a super-primitive element if $J[\alpha] \subseteq \mathfrak{p}$ for every element \mathfrak{p} of $Dp_1(R)$ where $Dp_1(R) = \{\mathfrak{p} \in \text{Spec}R; \text{depth}R_\mathfrak{p} = 1\}$. Super-primitive elements are anti-integral elements by [3, Theorem 1.12].

Corollary 3. Let R be a Noetherian domain and α a super-primitive element over R. Let β be the same as in Theorem 1. Then the following conditions are equivalent:

(i) $I[\beta] = I[\alpha]$.

(ii) $\varphi(\alpha, b)$ is a unit of R.

Proof. (ii) \Rightarrow (i). The assertion is obvious from Theorem 1.

(i) \Rightarrow (ii). By Theorem 1, we get $\varphi(\alpha, b)I[\alpha] = I[\alpha]$. By the definition of $I[\alpha]$, we see that $I[\alpha] \neq (0)$. By the assumption, α is a super-primitive element. Hence, for every element \mathfrak{p} of $Dp_1(R)$, there exists a non-zero element z of $I[\alpha]$ such that $I[\alpha]R_\mathfrak{p} = zR_\mathfrak{p}$ by [3, Theorem 2.11]. Therefore $\varphi(\alpha, b)R_\mathfrak{p} = R_\mathfrak{p}$ for every element \mathfrak{p} of $Dp_1(R)$. Since $\bigcap_{\mathfrak{p} \in Dp_1(R)} R_\mathfrak{p} = R$, we see that $\varphi(\alpha, b)$ is in R. If $\varphi(\alpha, b)$ is not a unit of R, there exists an element q of $Dp_1(R)$ such that $\varphi(\alpha, b) \subseteq q$ because every prime divisor of a principal ideal is of depth one. This is absurd. Hence $\varphi(\alpha, b)$ is a unit of R. Q.E.D.

Let α be a non-zero algebraic element of degree t over an integral domain R. Then we define the ideal $I[\alpha]$ of R by $I[\alpha] + I[\alpha^{-1}]$. Note that $\tilde{I}[\alpha] = (1, \eta)I[\alpha]$ by Theorem 1.
Remark 4. Let α be a non-zero algebraic element of degree t over an integral domain R. Let p be an element of $\text{Spec}(R)$. If $p \not\in \tilde{I}_[\alpha]$, then α is integral over R_p or α^{-1} is integral over R_p.

Proof. We see that $p \not\in I_{[\alpha]}$ or $p \not\in I_{[\alpha^{-1}]}$. Then $I_{[\alpha]}R_p = R_p$ or $I_{[\alpha^{-1}]}R_p = R_p$. Hence α is integral over R_p or α^{-1} is integral over R_p. Q.E.D.

Corollary 5. Let R, α, β be the same as in Theorem 1. Then $\tilde{I}_{[\beta]} = (\varphi_\alpha(a, b), \varphi_\alpha(c, d))I_{[\alpha]}$.

Proof. Theorem 1 implies that $I_{[\beta]} = \varphi_\alpha(a, b)I_{[\alpha]}$ and $I_{[\beta^{-1}]} = \varphi_\alpha(c, d)I_{[\alpha]}$. Hence we obtain $\tilde{I}_{[\beta]} = (\varphi_\alpha(a, b), \varphi_\alpha(c, d))I_{[\alpha]}$. Q.E.D.

ACKNOWLEDGMENT. We express our gratitude to the referee for simplifying the proof of Theorem 1 and improving our paper.

REFERENCES

