<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Prime and semiprime acts over monoids with zero</td>
</tr>
<tr>
<td>著者</td>
<td>JAVED AHSAN; ZHONGKUI LIU</td>
</tr>
<tr>
<td>引用</td>
<td>Mathematical Journal of Ibaraki University, 33: 9-15</td>
</tr>
<tr>
<td>発行年</td>
<td>2001</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3083</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課（図書館） 情報支援係

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
Prime and semiprime acts over monoids with zero

JAVED AHSAN* AND LIU ZHONGKUI**

ABSTRACT. In this note we extend the notions of prime and semiprime ideals of a semigroup S to arbitrary S-acts and develop some of their basic properties. In particular, we characterize semigroups all of whose ideals are prime (semiprime).

1. Introduction and Preliminaries.

Let S be a monoid, that is, a semigroup with an identity element 1. A right unitary S-act M, denoted by MS is a set M and a function $M \times S \to M$ such that if ms denotes the image of (m, s) for $m \in M$ and $s \in S$, then (i) $(ms)t = m(st)$ for $m \in M$, and $s, t \in S$; and (ii) $m1 = m$ for all $m \in M$. Left S-acts are defined similarly. An S-subact NS of a right S-act MS written as $NS \subseteq MS$, is a subset N of M such that $ns \in N$ for all $n \in N$ and $s \in S$. Thus the subacts of the S-act SS (resp. SS) are right (resp. left) ideal of S. The word ideal will mean two-sided ideal, that is, a subset of S which is both a right and a left ideal of S. An element $d \in MS$ with $ds = d$ for all $s \in S$ is called a fixed element of M. Let D denote the set of all fixed elements of M. A right S-act M is called centered if S is a semigroup with a two-sided zero element 0 and $\|D\| = 1$. Thus M is centered if and only if there is a fixed element (necessarily unique) denoted by θ such that: (i) $\theta s = \theta$ for all $s \in S$; and (ii) $m0 = \theta$ for all $m \in M$; θ will be called the zero of M (cf. [5]). If I is an ideal of a semigroup S then the Rees factor of S modulo I will be denoted by S/I; we recall that the equivalence classes of S/I are I (the zero of S/I) and every single element set $\{a\}$ with $a \in S - I$.

A right ideal I of S is called prime if for $a, b \in S$, the inclusion $aSb \subseteq I$ implies that either $a \in I$ or $b \in I$. Equivalently, I is prime if and only if for any right ideals A and B of S, the set inclusion $AB \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$; I is called semiprime if for $a \in S$, $aSa \subseteq I$ implies that $a \in I$. Equivalently $A^2 \subseteq I$ implies that $A \subseteq I$ for all right ideals A of S. Prime and semiprime ideals are useful tools in semigroup theory (cf. [3]). We extend these notions to arbitrary S-acts, where S is a monoid with a two-sided zero element, analogous to the notions of prime and semiprime (ring) modules introduced by Dauns [4]. In what follows
S will denote a monoid with a two-sided zero 0 and all S-acts are centered right unitary as defined above.

2. Results.

We begin with some preliminary definitions.

Definition 1. A right ideal I of S is called irreducible if I = H ∩ K implies that I = H or I = K for right ideals H and K of S. More generally, an S-subact K of a right S-act M is irreducible if K = A ∩ B implies that K = A or K = B for any S-subacts A and B of M.

Definition 2. Let M be a right S-act. The ideal \(J(\theta) = J = \{ s \in S | Ms = \{ \theta \} \} \) of S is called the annihilator of M in S; M is called faithful if \(J = \{ 0 \} \). If K is an S-subact of a right S-act M, the set \(\{ s \in S | Ms \subseteq K \} \) is an ideal of S, called the associated ideal of K. This ideal will be denoted by \(J_K \).

Definition 3. An S-subact K of a right S-act M is a prime S-subact of M if for any \(v \in M \) and \(a \in S \), the inclusion \(vSa \subseteq K \) implies either \(v \in K \) or \(a \in J_K \). K is a semiprime S-subact of M if for any \(a \in M \) and any \(x \in S \), the inclusion \(axSx \subseteq K \) implies \(ax \in K \). The right S-act M itself is called prime (resp. semiprime) if the zero subact (\(\emptyset \)) of M is prime (resp. semiprime). In particular, the monoid S is prime (resp. semiprime) if the zero ideal (\(\{ 0 \} \)) of S is prime (resp. semiprime) as an S-subact of \(SS \).

Proposition 1. A right ideal I of S is prime (resp. semiprime) if and only if I is prime (resp. semiprime) as an S-subact of \(SS \).

Proof. Obvious.

Proposition 2. Every nonzero S-subact N of a prime S-act M is a prime S-act.

Proof. Suppose for \(a \in S \) and \(v \in N \), we have \(vSa = \{ \theta \} \). If \(v \neq \theta \), then since M is a prime S-act (that is, \(\{ \theta \} \) is a prime subact of M), it follows that \(a \in J(\theta) = J = \{ s \in S | Ms = \{ \theta \} \} \subseteq \{ s \in S | Ms = \{ \theta \} \} \). Hence N is prime.

Proposition 3. Let K be a proper subact of a right S-act M. Then the following statements are true:

(a) If K is a prime subact then \(J_K \) is a prime ideal of S.

(b) If K is a semiprime subact then \(J_K \) is a semiprime ideal of S.

Proof. (a) Consider the inclusion \(aSa \subseteq J_K \) for \(a,b \in S \). Assume \(a \notin J_K \). Then \(Ma \not\subseteq K \). Hence there exists \(x \in M \) such that \(xa \notin K \). Since \(aSa \subseteq J_K \), \(M(aSa) \subseteq K \). This implies that \(x(aSa) \subseteq K \). Since K is a prime subact and \(xa \notin K \), it follows that \(b \in J_K \), that is, \(J_K \) is a prime ideal.

(b) To show that \(J_K \) is a semiprime ideal, consider \(aSa \subseteq J_K \) for some \(a \in S \). Suppose \(a \notin J_K \). Then \(Ma \not\subseteq K \), and so there exists \(x \in M \) such that \(xa \notin K \). Since \(aSa \subseteq J_K \), \(M(aSa) \subseteq K \). This implies that \(x(aSa) \subseteq K \), that is, \(xaSa \subseteq K \). This contradicts that K is a semiprime subact. Hence \(a \in J_K \).
Proposition 4. Let \(M \) be a right \(S \)-act. Then for an \(S \)-subact \(K \) of \(M \) and the associated ideal \(J_K \), the following assertions are equivalent:

(a) \(K \) is a prime \(S \)-subact of \(M \).
(b) For all right \(S \)-subacts \(V \) of \(M \) and (right) ideals \(A \) of \(S \), \(VA \subseteq K \) implies that either \(V \subseteq K \) or \(A \subseteq J_K \).
(c) For all \(S \)-subacts \(K \) and \(W \) of \(M \) such that \(K \) is properly contained in \(W \), and for all ideals \(B \) of \(S \) such that \(J_K \) is properly contained in \(B \), one has \(WB \nsubseteq K \).

Proof. We can prove the proposition by analogy with the proof of [4, Theorem 1.3].

Corollary. A right \(S \)-act \(M \) is prime if and only if every nonzero subact of \(M \) has the same associated ideal.

Proposition 5. A monoid \(S \) is prime if and only if there exists a faithful prime \(S \)-act.

Proof. If monoid \(S \) is prime, then \(S_S \) is a faithful prime \(S \)-act. Conversely, let \(M \) be a faithful prime \(S \)-act. We show that \(S \) is a prime monoid, that is, \((0)\) is a prime ideal of \(S \). Suppose that \(aSb = (0) \) for some \(a, b \in S \). If \(a \neq 0 \) then \(MaS \neq (\theta) \). For if \(MaS = (\theta) \) then \(aS \subseteq \{ s \in S | Ms = (\theta) \} \). Thus \(a = 0 \), which is contrary to the assumption. Hence there exists \(x \in M \) such that \(xaS \neq (\theta) \). But \(aSb = (0) \). Hence \(xaSb = (\theta) \) is a proper \(S \)-subact of \(M \). Since \(M \) is a prime \(S \)-act and \(xaSb = (\theta) \) and also since \(xa \) is a nonzero element of \(M \), \(b \in J = \{ s \in S | Ms = (\theta) \} = (0) \). Hence \((0)\) is a prime ideal of \(S \), showing that \(S \) is a prime monoid.

Proposition 6. Let \(P \) be an ideal of \(S \). Then the following conditions are equivalent:

(a) \(P \) is a prime ideal.
(b) There exists a prime right \(S \)-act \(M \) with \(P = J_{(\theta_M)} = \{ s \in S | Ms = (\theta_M) \} \).

Proof. (a) \(\Rightarrow \) (b). Suppose that \(P \) is a prime ideal of \(S \). Then the Rees factor semigroup \(\overline{S} = S/P \) is a prime monoid with zero and thus by Proposition 5, there exists a faithful prime \(\overline{S} \)-act \(M \) such that \(\{ \overline{s} \in \overline{S} | M\overline{s} = (\theta_M) \} = (0) \). From this it follows that \(P = J_{(\theta_M)} \).

(b) \(\Rightarrow \) (a). Suppose that \(M \) is a prime \(S \)-act with \(P = J_{(\theta_M)} \). Then \(M \) is a prime act over the Rees factor semigroup \(S/P \) which is faithful. Hence by Proposition 5, \(S/P \) is a prime semigroup, and so \(P \) is a prime ideal of \(S \).

Next we state the following characterization of semiprime monoids which can be proved by analogy with the proof of [6, Proposition 10.16].

Theorem 1. Let \(S \) be a nontrivial monoid with zero. Then the following assertions are equivalent:

(a) \(S \) is a semiprime monoid.
(b) The intersection of all prime ideals of \(S \) is equal to \((0)\).
(c) If \(A \) is an ideal of \(S \) with \(A^2 = (0) \), then \(A = (0) \).
(d) \(S \) has no nonzero nilpotent right or left ideals.
Lemma 1. Let M be a finitely generated S-act over a monoid S. Then every proper subact of M is contained in a maximal subact of M.

Proof. By analogy with the proof of [2, Theorem 2.8], we can prove this lemma.

Lemma 2. If K is a maximal subact of a right S-act M, then K is a prime S-subact.

Proof. For elements $v \in M$ and $a \in S$, consider the inclusion $vSa \subseteq K$ with $v \notin K$. Since K is a maximal subact of M and $v \notin K$, $K \cup vS = M$. Let m be an arbitrary element of M. Then $m \in K$ or $m \in vS$. Thus $m = k$ for some $k \in K$ or $m = vs$ for some $s \in S$. Then $ma = ka \in K$ or $ma = vsa \in vSa \subseteq K$. Thus $ma \in K$, in any case. Hence $a \in J_K$, showing that K is a prime subact.

Combining Lemmas 1 and 2, we obtain

Theorem 2. Let M be a finitely generated act over a monoid S with zero. Then every proper subact of M is contained in a prime subact.

Next we prove two more lemmas.

Lemma 3. Let K be a proper subact of a right S-act M. Then K is the intersection of all the irreducible subacts containing it.

Proof. For $m \in M \setminus K$, let V_m be any subact of M maximal with respect to $K \subseteq V_m$ but $m \notin V_m$. Suppose that $V_m = A \cap B$ for subacts A, B of M with $A \neq V_m$ and $B \neq V_m$. The maximality of V_m implies that $m \in A$ as well as $m \in B$. But then $m \in A \cap B = V_m$ is a contradiction. Thus $K = \bigcap\{V_m|m \in M - K\}$ is an intersection of irreducible subacts.

Lemma 4. If A is an irreducible subact of a right S-act M, then the following conditions are equivalent:
 (a) A is prime.
 (b) A is semiprime.

Proof. (a) \Rightarrow (b). Suppose that A is prime and for $\alpha \in M$ and $x \in S$, we have $\alpha xSx \subseteq A$. Since A is prime, it follows that either $\alpha x \in A$ or $x \in JA$. Suppose $\alpha x \notin A$. Since $\alpha x \in Mx$, $Mx \subseteq A$. Hence $x \notin JA$. But this contradicts that A is prime. Note that (a) \Rightarrow (b) does not depend upon the assumption that A is irreducible.

(b) \Rightarrow (a). Assume that A is semiprime but A is not prime. Then there exist $a \in S$ and $v \in M$ such that $vSa \subseteq A$ and $v \notin A$ and $a \notin JA$. Since $a \notin JA$, it follows that $Ma \not\subseteq A$. Hence there exists $x \in M$ such that $xa \notin A$. Let $m = xa$ then $m \in M$ and $(vS \cup A) \cap (mS \cup A) \neq A$. For, if $(vS \cup A) \cap (mS \cup A) = A$, then since A is irreducible, either $vS \cup A = A$ or $mS \cup A = A$. This implies that either $vS \subseteq A$ or $mS \subseteq A$, that is, either $v \in A$ or $m \in A$. Furthermore, we note that $(vS \cup A) \cap (mS \cup A) \not\subseteq A$; for otherwise, $A \subseteq (vS \cup A) \cap (mS \cup A) \subseteq A$, which again implies that $(vS \cup A) \cap (mS \cup A) = A$. Hence there exists $t \in S$ such that $mt \in vS$ but $mt \notin A$. Now $mtSat = xatSat \subseteq (vS)Sat \subseteq (vS)a \subseteq At \subseteq A$ but $mt = xat \notin A$. This implies that A is not semiprime, which proves the desired implication.
Theorem 3. Let M be a right S-act. Then the following statements are equivalent:

(a) Each proper S-subact of M is semiprime.

(b) Each proper S-subact of M is an intersection of prime subacts of M.

Proof. (a) \Rightarrow (b). Let K be a proper S-subact of M. Then by Lemma 3, $K = \cap V_m$, where each V_m is a proper irreducible subact. Also each V_m is semiprime by the hypothesis. Hence by Lemma 4, each V_m is prime.

(b) \Rightarrow (a). Suppose $K = \bigcap_i P_i$ is any intersection of prime subacts P_i of M. Consider the inclusion $\alpha xSx \subseteq \bigcap_i P_i$ for some $\alpha \in M$ and $x \in S$. Then $\alpha xSx \subseteq P_i$ for each i. Since each P_i is prime, each P_i is semiprime by Lemma 4. Hence $\alpha x \in P_i$ for each i, that is, $\alpha x \in \bigcap_i P_i = K$, showing that K is semiprime.

Corollary. Every intersection of semiprime subacts of an S-act M is a semiprime subact of M.

A semigroup S is semisimple (cf [3, p. 76]) if and only if $I^2 = I$ for every ideal I of S. These semigroups admit many interesting characterizations (cf. [3]). As an application of the above theorem, we obtain a characterization of semigroups in which the property $I^2 = I$ holds for every right ideal I of S.

Theorem 4. The following conditions for S are equivalent:

(a) $I = I^2$ for each right ideal I of S.

(b) Each proper right ideal of S is semiprime.

(c) Each proper right ideal of S is the intersection of prime right ideals.

(d) S is weakly regular (that is, $x \in xSxS$ for any $x \in S$).

(e) S is right regular (that is, for any element $a \in S$, there exists x in S such that $a^2x = a$).

Proof. (a) \Rightarrow (b). Let I be a right ideal of S and let $xSx \subseteq I$ for some $x \in S$. Then $(xSx)S \subseteq I$, so by the hypothesis, $xS \subseteq I$, that is, $x \in I$.

(b) \Rightarrow (c). Follows from Theorem 3.

(c) \Rightarrow (a). Let I be a right ideal of S. If $I = S$ then clearly $I = I^2$. If $I \neq S$, then $I^2(\neq S)$ is the intersection of prime right ideals by the hypothesis, and hence I^2 is semiprime, which implies that $I^2 = I$.

(a) \Leftrightarrow (d). See [1] for a proof of this equivalence.

(a) \Leftrightarrow (e). See [3, Theorem 4.2, p. 122].

Next, we characterize monoids all of whose ideals are prime.

Theorem 5. The following conditions on S are equivalent:

(a) Each ideal of S is prime.

(b) S is a semisimple semigroup and the set of ideals of S is totally ordered under inclusion.

Proof. (a) \Rightarrow (b). Let I be an ideal of S. Then I^2, being an ideal of S, is prime. Hence $I \subseteq I^2$, that is, $I^2 = I$. Now let A and B be any ideals of S. We
have \(AB \subseteq A \cap B \). Since \(A \cap B \) is prime, either \(A \subseteq A \cap B \) or \(B \subseteq A \cap B \). Hence either \(A \subseteq B \) or \(B \subseteq A \).

(b) \(\Rightarrow \) (a). Let \(P \) be any ideal of \(S \) and let \(IJ \subseteq P \) for ideals \(I \) and \(J \) of \(S \). Suppose \(I \subseteq J \). Then \(I = I^2 \subseteq IJ \subseteq P \). Hence \(P \) is a prime ideal.

A right \(S \)-act \(M \) is called right noetherian if every subact of \(M \) is finitely generated. A semigroup \(S \) is called right noetherian if \(S_S \) is noetherian. This holds if and only if \(S \) satisfies the ascending chain condition for right ideals. Noetherian semigroups frequently arise in the homological classification of monoids (cf. [5]). We conclude with the following characterization of noetherian semigroups which may be of independent interest.

Theorem 6. Let \(S \) be a right duo monoid (that is, every right ideal of \(S \) is two-sided). Then \(S \) is right noetherian if and only if each prime right ideal of \(S \) is finitely generated.

Proof. Suppose that \(S \) is right noetherian. Clearly every prime right ideal of \(S \) is finitely generated. Conversely, assume that every prime right ideal of \(S \) is finitely generated. Suppose that there exists a right ideal \(I \) of \(S \) which is not finitely generated. By Zorn's lemma, we can choose a right ideal \(I_0 \) of \(S \) such that: \(I \subseteq I_0 \); and \(I_0 \) is not finitely generated; and if \(J \) is a right ideal of \(S \) and \(I_0 \subseteq J \); then either \(J = I_0 \) or else \(J \) is finitely generated. We will prove that \(I_0 \) is a prime right ideal and hence, finitely generated by the assumed hypothesis, and thus the supposition that there exists a right ideal \(I \) of \(S \) such that \(I \) is not finitely generated is impossible. Suppose that \(I_0 \) is not a prime right ideal. Then there exist right ideals \(A, B \) of \(S \) such that \(AB \subseteq I_0 \) but \(A \nsubseteq I_0 \) and \(B \nsubseteq I_0 \). Let \(a \in A \) be such that \(a \notin I_0 \). Then \(I_0 \cup aS \) contains \(I_0 \) properly. Hence \(I_0 \cup aS = x_1S \cup x_2S \cup \cdots \cup x_nS \) for some \(x_1, x_2, \ldots, x_n \in S \). Let \(J = \{ x \in S | ax \in I_0 \} \). Then \(I_0 \cup B \subseteq J \). For if \(x \in I_0 \) then \(ax \in I_0 \), since \(S \) is a right duo monoid (that is, every right ideal is two-sided). On the other hand, if \(x \in B \) then \(ax \in AB \subseteq I_0 \). This verifies \(I_0 \cup B \subseteq J \). Now since \(B \nsubseteq I_0 \), \(J \) contains \(I_0 \) properly, and hence \(J = y_1S \cup y_2S \cup \cdots \cup y_mS \) for some \(y_1, y_2, \ldots, y_m \in S \). Without loss of generality we suppose that \(x_i = as_i \) for some \(s_i \in S \) and \(i = 1, \ldots, p \), and \(x_i = b_i \) for some \(b_i \in I_0 \) and \(i = p + 1, p + 2, \ldots, n \). Clearly \(b_{p+1}S \cup \cdots \cup b_nS \cup aJ \subseteq I_0 \), for if \(x = b_is \) with some \(b_i \in I_0 \) and \(s \in S \), then \(x \in I_0 \); on the other hand, if \(x \in aJ \) then \(x = ab \) for some \(b \in J \) and hence \(x = ab \in I_0 \). We now show that \(I_0 \subseteq b_{p+1}S \cup \cdots \cup b_nS \cup aJ \). Let \(y \in I_0 \). Then \(y \in I_0 \cup aS = x_1S \cup x_2S \cup \cdots \cup x_nS \). Hence \(y = x_is \) for some \(s \in S \) and \(i = 1, 2, \ldots, n \). Thus \(y = x_is = as_is \) for some \(i \in \{ 1, 2, \ldots, p \} \) or \(y = b_is \) (\(b_i \in I_0 \)) for some \(i \in \{ p + 1, \ldots, n \} \). If \(y = b_is \) then \(y \in b_{p+1}S \cup \cdots \cup b_nS \); and if \(y = as_is \) then, since \(y \in I_0 \) it follows that \(s_is \in J \). Hence \(y \in aJ \). Thus \(y \in b_{p+1}S \cup \cdots \cup b_nS \cup aJ \), showing that \(I_0 \subseteq b_{p+1}S \cup \cdots \cup b_nS \cup aJ \), which, in turn, implies that \(I_0 = b_{p+1}S \cup \cdots \cup b_nS \cup aJ \). Since \(aJ = ay_1S \cup \cdots \cup ay_mS \), it follows that \(I_0 = b_{p+1}S \cup \cdots \cup b_nS \cup ay_1S \cup \cdots \cup ay_mS \). This implies that \(I_0 \) is finitely generated. But this is impossible. Therefore \(I_0 \) is a prime right ideal and it is finitely generated by the hypothesis. This disproves the assumption that there is a right ideal \(I \) which is not finitely generated.
REFERENCES

