<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>An example of a positive definite function which is not of positive type on Z^2</td>
</tr>
<tr>
<td>Author(s)</td>
<td>FURUTA, Koji; SAKAKIBARA, Nobuhisa</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 31: 43-46</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3074</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術情報リポジトリ

(Roseリポジトリいばらき (茨城大学学術情報リポジトリ))
An example of a positive definite function which is not of positive type on \mathbb{Z}^2

KOJI FURUTA* and NOBUHISA SAKAKIBARA**

Let $S = (S, +, \ast)$ be an abelian \ast-semigroup with the identity 0, \mathcal{H} a complex Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and $B(\mathcal{H})$ the set of bounded linear operators on \mathcal{H}. A function $\varphi : S \to B(\mathcal{H})$ is called of positive type if

$$\sum_{i,j=1}^{n} \langle \varphi(s_i + s_j^*) \xi_i, \xi_j \rangle \geq 0$$

for all $n \geq 1$, $s_1, s_2, \ldots, s_n \in S$ and $\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{H}$. Moreover, φ is called positive definite if

$$\sum_{i,j=1}^{n} c_i \overline{c_j} \langle \varphi(s_i + s_j^*) \xi, \xi \rangle \geq 0$$

for all $n \geq 1$, $s_1, s_2, \ldots, s_n \in S$, $c_1, c_2, \ldots, c_n \in \mathbb{C}$ and $\xi \in \mathcal{H}$. Every function of positive type is positive definite, and every scalar-valued, positive definite function is of positive type. But a positive definite function is not necessarily of positive type. In fact, T. M. Bisgaard demonstrated that there exists an explicit example of a positive definite function which is not of positive type on $(\mathbb{N}_0, +, x^* = x)$ where $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$ (see [1, Theorem 1]), and we did on $(\mathbb{Z}, +, x^* = x)$ (see [3, Theorem 3.7]). For abelian \ast-semigroups $(\mathbb{N}_0^2, +, x^* = x)$ and $(\mathbb{Z}^2, +, x^* = x)$, is there such an example? When $(\mathbb{N}_0^2, +, x^* = x)$, the answer is clear because we have the zero extension of Bisgaard's example (i.e. $\varphi(n, 0)$ is Bisgaard's and $\varphi(n, m) = 0$ for $m > 0$). In this paper, we shall show such an explicit example on $(\mathbb{Z}^2, +, x^* = x)$.

REMARK. A function $\varphi : S \to B(\mathcal{H})$ is called a operator moment function if there exists a $B(\mathcal{H})^*$-valued measure F on S^* such that

$$\langle \varphi(s) \xi, \eta \rangle = \int_{S^*} \rho(s)d(F(\rho)\xi, \eta)$$

for $s \in S$, $\xi, \eta \in \mathcal{H}$.

Every operator moment function is of positive type. But a function of positive type is not necessarily an operator moment function. In fact, even a scalar-valued, positive definite function is not necessarily a moment function. So an
Example of a positive definite function which is not of positive type on \(\mathbb{Z}^2 \)

Abelian \(*\)-semigroup \(S \) is called \textit{operator semiperfect} (resp. \textit{semiperfect}) if every function of positive type (resp. scalar-valued, positive definite function) on \(S \) is a operator moment function (resp. moment function). Operator semiperfect \(*\)-semigroups have been analyzed by Bisgaard ([2]), Stochel and Szafraniec ([4]), and the authors ([3]). Semiperfect \(*\)-semigroups have been more analyzed by Bisgaard and the authors.

Let us first define a linear order \(\ll \) on \(\mathbb{Z}^2 \) as follows:

\[
(n_1, m_1) \ll (n_2, m_2) \iff |n_1| + |m_1| < |n_2| + |m_2| \quad \text{or}
\]
\[
|n_1| + |m_1| = |n_2| + |m_2|, \quad m_1 > 0, m_2 > 0, n_1 < n_2 \quad \text{or}
\]
\[
|n_1| + |m_1| = |n_2| + |m_2|, m_1 > 0, m_2 \leq 0 \quad \text{or}
\]
\[
|n_1| + |m_1| = |n_2| + |m_2|, m_1 \leq 0, m_2 \leq 0, n_2 < n_1.
\]

Arrange points of \(\mathbb{Z}^2 \) by this order, i.e.

\[
\begin{align*}
x_0 &:= (0,0), & x_1 &:= (0,1), & x_2 &:= (1,0), & x_3 &:= (0,-1), \\
x_4 &:= (-1,0), & x_5 &:= (-1,1), & x_6 &:= (0,2), & \ldots
\end{align*}
\]

and let \(a_n := 2^{(n+2)}n, n \geq 1 \). The following is our theorem, in which the choices of \(2 \times 2 \) matrices is similar to those in Bisgaard's example.

Theorem. Let \(\varphi : \mathbb{Z}^2 \to M_2(\mathbb{C}) \) be a function defined by

\[
\varphi(x_0) := \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad \varphi(x_i) := \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \quad 1 \leq i \leq 5,
\]
\[
\varphi(x_6) := \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \quad \varphi(x_n) := \begin{pmatrix} a_n & 0 \\ 0 & a_n \end{pmatrix}, \quad n \geq 7.
\]

Then \(\varphi \) is positive definite and not of positive type on \((\mathbb{Z}^2, +, x^* = x) \).

Proof. To see that \(\varphi \) is positive definite on \((\mathbb{Z}^2, +, x^* = x) \), we shall prove

\[
D_n(\xi) := \begin{vmatrix}
\langle \varphi(x_0 + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_0 + x_n)\xi, \xi \rangle \\
\vdots & \ddots & \vdots \\
\langle \varphi(x_n + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_n + x_n)\xi, \xi \rangle
\end{vmatrix} > 0
\]

for \(n \geq 0 \) and \(\xi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2 \) with \(|\alpha|^2 + |\beta|^2 = 1 \). We have

\[
D_0(\xi) = 4|\alpha|^2 + |\beta|^2 \geq 1,
\]
\[
D_1(\xi) = (4|\alpha|^2 + |\beta|^2)(|\alpha|^2 + 4|\beta|^2) - 16(\text{Re}(\alpha\overline{\beta}))^2
\]
\[
= 4|\alpha|^4 + 4|\beta|^4 + 17|\alpha\beta|^2 - 16(\text{Re}(\alpha\overline{\beta}))^2
\]
\[
\geq 4|\alpha|^4 + 4|\beta|^4 + |\alpha|^2|\beta|^2
\]
\[
= 4 - 7|\alpha|^2|\beta|^2 \geq 4 - \frac{7}{4} > 1.
\]
Let $n \geq 2$ and suppose that $D_{n-1}(\xi) \geq 1$. We show that $D_n(\xi) \geq 1$. Suppose the following:

(*) For every $n \geq 2$, there exists a natural number $m \geq n, m \geq 8$ such that

$$\begin{align*}
&||\varphi(x_n + x_n)|| = a_m, \\
&||\varphi(x_j + x_k)|| \leq a_{m-1}, \quad 0 \leq j \leq n, \quad 0 \leq k \leq n - 1.
\end{align*}$$

Then

$$D_n(\xi) = \langle \varphi(x_n + x_n) \xi, \xi \rangle D_{n-1}(\xi)$$

$$\geq m - n a_{m-1} n!$$

$$\geq 2^{(m+2)!} - (n+1)2^{(m+1)!}(n+1)!$$

$$\geq 2^{(m+1)!}(m+1)(2^{(m+1)!} - (n+1)!$$

$$\geq 2^{(m+1)!} - (m+1)!$$

$$\geq 1,$$

where

$$D_k(\xi) := \begin{vmatrix}
\langle \varphi(x_0 + x_0) \xi, \xi \rangle & \cdots & \langle \varphi(x_0 + x_{n-1}) \xi, \xi \rangle \\
\vdots & \ddots & \vdots \\
\langle \varphi(x_{k-1} + x_0) \xi, \xi \rangle & \cdots & \langle \varphi(x_{k-1} + x_{n-1}) \xi, \xi \rangle \\
\langle \varphi(x_{k+1} + x_0) \xi, \xi \rangle & \cdots & \langle \varphi(x_{k+1} + x_{n-1}) \xi, \xi \rangle \\
\vdots & \ddots & \vdots \\
\langle \varphi(x_n + x_0) \xi, \xi \rangle & \cdots & \langle \varphi(x_n + x_{n-1}) \xi, \xi \rangle
\end{vmatrix},$$

$k = 0, 1, 2, \ldots, n - 1$. Thus, by induction, we get $D_n(\xi) \geq 1$ for $n \geq 0$. Suppose that

(**) for every $n \geq 2$, $x_n + x_k \ll x_n + x_n$, $k = 0, 1, 2, \ldots, n - 1$.

Then we can easily prove (*). Therefore let us prove (**).

Put $x_n : = (p, q)$ and $x_k : = (r, s)$. Then $x_n + x_n = (2p, 2q)$ and $x_n + x_k = (p + r, q + s)$. In case that $|r| + |s| < |p| + |q|$ or $pr < 0$ or $qs < 0$, it is easily seen that $|p + r| + |q + s| < |2p| + |2q|$. Hence $x_n + x_k \ll x_n + x_n$. Suppose that $|r| + |s| = |p| + |q|, pr \geq 0$ and $qs \geq 0$. When $p > 0$ and $q \geq 0$, the condition $x_k \ll x_n$ implies $p > r \geq 0$ and $s \geq 0$. Hence $(p + r) + (q + s) = 2p + 2q$, $0 \leq 2q < q + s$ and $p + r < 2p$. Therefore $x_n + x_k \ll x_n + x_n$. When $p \geq 0$ and $q < 0$, we have $r > p \geq 0$ and $0 \geq s > q$. Hence $(p + r) + (q + s) = 2p + |2q|$, $2q < q + s < 0$ and $p + r > 2p$. Therefore $x_n + x_k \ll x_n + x_n$. When $p \leq 0$
and $q > 0$, since $0 \leq p > r$ and $q > s > 0$, we have $|p + r| + (q + s) = |2p| + 2q$, $0 < q + s < 2q$ and $p + r < 2p$. Therefore $x_n + x_k \ll x_n + x_n$. When $p < 0$ and $q \leq 0$, since $0 \geq r > p$ and $s < q \leq 0$, we have $|p + r| + |q + s| = |2p| + |2q|$, $q + s < 2q \leq 0$ and $2p < p + r$. Therefore $x_n + x_k \ll x_n + x_n$. We finished the proof of (**).

Put $\xi_0 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\xi_1 := \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Then

$$\sum_{i,j=0}^1 \langle \varphi(x_i + x_j)\xi_i, \xi_j \rangle = -2 < 0,$$

which implies that φ is not of positive type. This completes the proof. \blacksquare

Acknowledgements. We would like to thank the referee for offering many helpful suggestions. This work of the second author was partly supported by the Saneyoshi Scholarship Foundation.

References