<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>An example of a positive definite function which is not of positive type on Z²</td>
</tr>
<tr>
<td>著者</td>
<td>FURUTA, Koji; SAKAKIBARA, Nobuhisa</td>
</tr>
<tr>
<td>キャリクレーション</td>
<td>Mathematical Journal of Ibaraki University, 31: 43-46</td>
</tr>
<tr>
<td>発行年</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3074</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術企画部学術情報課（図書館） 情報支援係
〒305-8577 茨城県つくば市大学1-1-1
An example of a positive definite function which is not of positive type on Z^2

KOJI FURUTA* and NOBUHISA SAKAKIBARA**

Let $S = (S, +, *)$ be an abelian $*$-semigroup with the identity 0, \mathcal{H} a complex Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and $B(\mathcal{H})$ the set of bounded linear operators on \mathcal{H}. A function $f : S \to B(\mathcal{H})$ is called of positive type if

$$\sum_{i,j=1}^{n} \langle f(s_i + s_j^*) \xi_i, \xi_j \rangle \geq 0$$

for all $n \geq 1$, $s_1, s_2, \ldots, s_n \in S$ and $\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{H}$. Moreover, f is called positive definite if

$$\sum_{i,j=1}^{n} c_i \overline{c_j} \langle f(s_i + s_j^*) \xi, \xi \rangle \geq 0$$

for all $n \geq 1$, $s_1, s_2, \ldots, s_n \in S$, $c_1, c_2, \ldots, c_n \in \mathbb{C}$ and $\xi \in \mathcal{H}$. Every function of positive type is positive definite, and every scalar-valued, positive definite function is of positive type. But a positive definite function is not necessarily of positive type. In fact, T. M. Bisgaard demonstrated that there exists an explicit example of a positive definite function which is not of positive type on $(\mathbb{N}_0, +, x^* = x)$ where $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$ (see [1, Theorem 1]), and we did on $(\mathbb{Z}, +, x^* = x)$ (see [3, Theorem 3.7]). For abelian $*$-semigroups $(\mathbb{N}_0, +, x^* = x)$ and $(\mathbb{Z}^2, +, x^* = x)$, is there such an example? When $(\mathbb{N}_0^2, +, x^* = x)$, the answer is clear because we have the zero extension of Bisgaard's example (i.e. $\varphi(n, 0)$ is Bisgaard's and $\varphi(n, m) = 0$ for $m > 0$). In this paper, we shall show such an explicit example on $(\mathbb{Z}^2, +, x^* = x)$.

REMARK. A function $f : S \to B(\mathcal{H})$ is called an operator moment function if there exists a $B(\mathcal{H})^+$-valued measure F on S^* such that

$$\langle f(s) \xi, \eta \rangle = \int_{S^*} \rho(s) d\langle F(\rho) \xi, \eta \rangle \quad \text{for } s \in S, \xi, \eta \in \mathcal{H}.$$
Example of a positive definite function which is not of positive type on \mathbb{Z}^2

Abelian \ast-semigroup S is called operator semiperfect (resp. semiperfect) if every function of positive type (resp. scalar-valued, positive definite function) on S is a operator moment function (resp. moment function). Operator semiperfect \ast-semigroups have been analyzed by Bisgaard ([2]), Stochel and Szafraniec ([4]), and the authors ([3]). Semiperfect \ast-semigroups have been more analyzed by Bisgaard and the authors.

Let us first define a linear order \ll on \mathbb{Z}^2 as follows:

$$(n_1, m_1) \ll (n_2, m_2) :\iff n_1 + m_1 \leq n_2 + m_2 \text{ or } n_1 + m_1 = n_2 + m_2, m_1 > 0, m_2 > 0, n_1 < n_2 \text{ or } n_1 + m_1 = n_2 + m_2, m_1 > 0, m_2 \leq 0 \text{ or } n_1 + m_1 = n_2 + m_2, m_1 \leq 0, m_2 \leq 0, n_2 < n_1.$$

Arrange points of \mathbb{Z}^2 by this order, i.e.

$$x_0 := (0, 0), \quad x_1 := (0, 1), \quad x_2 := (1, 0), \quad x_3 := (0, -1), \quad x_4 := (-1, 0), \quad x_5 := (-1, 1), \quad x_6 := (0, 2), \quad \ldots$$

and let $a_n := 2^{(n+2)}$, $n \geq 1$. The following is our theorem, in which the choices of 2×2 matrices is similar to those in Bisgaard's example.

Theorem. Let $\varphi : \mathbb{Z}^2 \rightarrow M_2(\mathbb{C})$ be a function defined by

$$\varphi(x_0) := \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad \varphi(x_i) := \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \quad 1 \leq i \leq 5,$$

$$\varphi(x_6) := \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \quad \varphi(x_n) := \begin{pmatrix} a_n & 0 \\ 0 & a_n \end{pmatrix}, \quad n \geq 7.$$

Then φ is positive definite and not of positive type on $(\mathbb{Z}^2, +, x^* = x)$.

Proof. To see that φ is positive definite on $(\mathbb{Z}^2, +, x^* = x)$, we shall prove

$$D_n(\xi) := \begin{vmatrix} \langle \varphi(x_0 + x_0)\xi, \xi \rangle & \ldots & \langle \varphi(x_0 + x_n)\xi, \xi \rangle \\ \vdots & \ddots & \vdots \\ \langle \varphi(x_n + x_0)\xi, \xi \rangle & \ldots & \langle \varphi(x_n + x_n)\xi, \xi \rangle \end{vmatrix} > 0$$

for $n \geq 0$ and $\xi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2$ with $|\alpha|^2 + |\beta|^2 = 1$. We have

$$D_0(\xi) = 4|\alpha|^2 + |\beta|^2 \geq 1,$$

$$D_1(\xi) = (4|\alpha|^2 + |\beta|^2)(|\alpha|^2 + 4|\beta|^2) - 16(\text{Re}(\alpha\beta))^2$$

$$= 4|\alpha|^4 + 4|\beta|^4 + 17|\alpha\beta|^2 - 16(\text{Re}(\alpha\beta))^2$$

$$\geq 4|\alpha|^4 + 4|\beta|^4 + |\alpha|^2|\beta|^2$$

$$= 4 - 7|\alpha|^2|\beta|^2 \geq 4 - \frac{7}{4} > 1.$$
Let \(n \geq 2 \) and suppose that \(D_{n-1}(\xi) \geq 1 \). We show that \(D_n(\xi) \geq 1 \). Suppose the following:

\[(*) \quad \text{For every } n \geq 2, \text{ there exists a natural number } m \geq n, m \geq 8 \text{ such that}\]
\[
||\varphi(x_n + x_n)|| = a_m, \\
||\varphi(x_j + x_k)|| \leq a_{m-1}, \quad 0 \leq j \leq n, \quad 0 \leq k \leq n-1.
\]

Then

\[
D_n(\xi) = \langle \varphi(x_n + x_n)\xi, \xi \rangle D_{n-1}(\xi) \\
+ \sum_{k=0}^{n-1} (-1)^{n+1+k+1} \langle \varphi(x_k + x_n)\xi, \xi \rangle D_k(\xi)
\]
\[
\geq a_m - ma_{m-1}n!
\]
\[
\geq 2^{(m+2)!} - (n + 1)!2^{(m+1)!(n+1)}
\]
\[
\geq 2^{(m+1)!}2^{(m+1)!} - (n + 1)!
\]
\[
\geq 2^{(m+1)!} - (m + 1)!
\]
\[
\geq 1,
\]

where

\[
D_k(\xi) = \begin{bmatrix}
\langle \varphi(x_0 + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_0 + x_{n-1})\xi, \xi \rangle \\
\vdots & \ddots & \vdots \\
\langle \varphi(x_{k-1} + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_{k-1} + x_{n-1})\xi, \xi \rangle \\
\langle \varphi(x_{k+1} + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_{k+1} + x_{n-1})\xi, \xi \rangle \\
\vdots & \ddots & \vdots \\
\langle \varphi(x_n + x_0)\xi, \xi \rangle & \cdots & \langle \varphi(x_n + x_{n-1})\xi, \xi \rangle
\end{bmatrix},
\]

\(k = 0, 1, 2, \ldots, n - 1 \). Thus, by induction, we get \(D_n(\xi) \geq 1 \) for \(n \geq 0 \). Suppose that

\[(**) \quad \text{for every } n \geq 2, \quad x_n + x_k \ll x_n + x_n, \quad k = 0, 1, 2, \ldots, n - 1.
\]

Then we can easily prove (*). Therefore let us prove (**).

Put \(x_n = (p, q) \) and \(x_k = (r, s) \). Then \(x_n + x_n = (2p, 2q) \) and \(x_n + x_k = (p + r, q + s) \). In case that \(|r| + |s| < |p| + |q| \) or \(pr < 0 \) or \(qs < 0 \), it is easily seen that \(|p + r| + |q + s| < |2p| + |2q| \). Hence \(x_n + x_k \ll x_n + x_n \). Suppose that \(|r| + |s| = |p| + |q|, pr \geq 0 \) and \(qs \geq 0 \). When \(p > 0 \) and \(q \geq 0 \), the condition \(x_k \ll x_n \) implies \(p > r \geq 0 \) and \(s \geq 0 \). Hence \((p + r) + (q + s) = 2p + 2q \), \(0 \leq 2q < q + s \) and \(p + r < 2p \). Therefore \(x_n + x_k \ll x_n + x_n \). When \(p \geq 0 \) and \(q < 0 \), we have \(r > p \geq 0 \) and \(0 \geq s > q \). Hence \((p + r) + |q + s| = 2p + |2q| \), \(2q < q + s < 0 \) and \(p + r > 2p \). Therefore \(x_n + x_k \ll x_n + x_n \). When \(p \leq 0 \)
and $q > 0$, since $0 \geq p > r$ and $q > s > 0$, we have $|p + r| + (q + s) = |2p| + 2q$, $0 < q + s < 2q$ and $p + r < 2p$. Therefore $x_n + x_k \ll x_n + x_n$. When $p < 0$ and $q \leq 0$, since $0 \geq r > p$ and $s < q \leq 0$, we have $|p + r| + |q + s| = |2p| + |2q|$, $q + s < 2q \leq 0$ and $2p < p + r$. Therefore $x_n + x_k \ll x_n + x_n$. We finished the proof of (**).

Put $\xi_0 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\xi_1 := \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Then

$$\sum_{i,j=0}^{1} \langle \varphi(x_i + x_j)\xi_i, \xi_j \rangle = -2 < 0,$$

which implies that φ is not of positive type. This completes the proof. \[\blacksquare\]

ACKNOWLEDGEMENTS. We would like to thank the referee for offering many helpful suggestions. This work of the second author was partly supported by the Saneyoshi Scholarship Foundation.

References

