ROSEリポジトリいばらき （茨城大学学術情報リポジトリ）

<table>
<thead>
<tr>
<th>タイトル</th>
<th>On Conditions for Denominator Ideals to Diffuse and Conditions for Elements to Be Exclusive in Anti-Integral Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>ODA, Susumu; YOSHIDA, Ken-ichi</td>
</tr>
<tr>
<td>引用</td>
<td>Mathematical Journal of Ibaraki University, 31: 21-27</td>
</tr>
<tr>
<td>発行年</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3070</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On Conditions for Denominator Ideals to Diffuse and Conditions for Elements to Be Exclusive in Anti-Integral Extensions

SUSUMU ODA* AND KEN-ICHI YOSHIDA**

Let R be a Noetherian integral domain and let α be an element in an algebraic extension field of the quotient field of R. Our objective is to show that a generalized denominator ideal $I_{[\alpha]}$ satisfies

$$I_{[\alpha]}R[\alpha] = R[\alpha]$$

if and only if $I_{[\alpha]} + I_{[\alpha^{-1}]} = R$ if and only if either α or α^{-1} is integral over R_p for each $p \in \text{Spec}(R)$, provided that α is an anti-integral element over R. The other is to show that for the canonical map $\phi : \text{Spec}(R[\alpha]) \to \text{Spec}(R)$, $D_p(R)$ is contained in the image of ϕ if and only if α is exclusive. The former result is closely concerned to [KY1] and [OY3], and the latter result is related to [OY2].

Notation and Conventions

Throughout this paper, we use the following notation unless otherwise specified:

Let R be a Noetherian domain (which is commutative and has a unit), let $R[X]$ be a polynomial ring, let α be an element of an algebraic extension field of the quotient field K of R and let $\varphi : R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\deg \varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Then $\eta_i \in K$ $(1 \leq i \leq d)$ are uniquely determined by α. Put $d = [K(\alpha) : K]$, $I_{\eta_i} := R : \eta_i$ and $I_{[\alpha]} := \bigcap_{i=1}^{d} I_{\eta_i}$. If $\text{Ker}(\pi) = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$, we say that α is anti-integral over R (cf. [OSY]). Put $J_{[\alpha]} := I_{[\alpha]}(1, \eta_1, \ldots, \eta_d)$. For $\beta \in K$, we put $J_{\beta} := I_{\beta}(1, \beta)$. Then $J_{[\alpha]} = c(I_{[\alpha]}\varphi_{\alpha}(X))$, where $c(\)$ denotes the ideal generated by the coefficients of the polynomials in (), that is, the content ideal of (). If $J_{[\alpha]} \not\subseteq p$ for all $p \in D_p(R) := \{p \in \text{Spec}(R) \mid \text{depth}R_p = 1\}$, the element α is called a super-primitive element over R. A super-primitive element over R is anti-integral over R (cf. [OSY, Theorem 1.12]). It is also known that any algebraic element over a Krull domain R is super-primitive over R (cf. [OSY, Theorem 1.13]), and hence α is anti-integral over R. We also note here that $I_{[\alpha]} = R \iff R[\alpha]$ is integral over R and that $J_{[\alpha]} = R \iff R[\alpha]$ is flat over R, provided that α is anti-integral over R.

Received May 26, 1998.

* Matsusaka Commercial High School Toyohara, Matsusaka, Mie 515-0205 Japan

** Department of Applied Math. Okayama University of Science Ridai-cho, Okayama 700-0005 Japan

* e-mail:

** e-mail:

Received May 26, 1998.
Conditions for generalized denominator ideals to diffuse in anti-integral extensions

We start with the following proposition. The implication (i) \(\Rightarrow\) (ii) is seen in [OY3, Proposition 7], but we give a proof for convenience.

Proposition 1.1. Assume that \(\alpha\) is an anti-integral element over \(R\). Then the following statements are equivalent:

(i) \(I_\alpha R[\alpha] = R[\alpha]\);
(ii) \(\eta_d \in R[\alpha], I_\alpha = I_{\eta_d}\) and \(J_{\eta_d} = R\).

Proof. If \(I_\alpha = R\), then the implications (i) \(\Leftrightarrow\) (ii) are trivially valid because \(\eta_d \in R\) by the definition of \(I_\alpha\). So we may assume that \(I_\alpha \neq R\).

(i) \(\Leftrightarrow\) (ii): Since \(\eta_1, \ldots, \eta_d \in I_\alpha^{-1} R[\alpha] = I^{-1}_\alpha I_\alpha R[\alpha] \subseteq R[\alpha]\), we have \(\eta_d \in R[\alpha]\). Put \(C := R[\eta_1, \ldots, \eta_d]\). Then \(R[\alpha]\) is a free \(C\)-module and \(R[\alpha]\) is integral over \(C\). So \(I_\alpha^{-1} R[\alpha] = R[\alpha]\) yields that \(I_\alpha C = C\). Thus \(C\) is flat over \(R\). Since \(R[\alpha]\) is flat over \(C\), \(R[\alpha]\) is flat over \(R\), and hence \(J_\alpha = R\).

Now we shall show that \(I_\alpha = I_{\eta_d}\). It is easy to see that \(I_\alpha \subseteq I_{\eta_d}\). Take \(p \in \text{Spec}(R)\) with \(p \supseteq I_\alpha\). Since \(I_\alpha R[\alpha] = R[\alpha]\), we have \(1 = a_0 + a_1 \alpha + \cdots + a_n \alpha^n\), where \(a_i \in I_\alpha \subseteq p\). Since \(1 - a_0\) is a unit in \(R_p\), \(\alpha^{-1}\) is integral over \(R\). Since \(\alpha\) is anti-integral over \(R\), \(\alpha^{-1}\) is also anti-integral over \(R\). Thus \(\varphi_{\alpha^{-1}}(X) = X^d + (\eta_d^{-1} \eta_{d-1}) X^{d-1} + \cdots + (\eta_1^{-1} \eta_1) X + \eta_1^{-1} \in R_p[X]\). So there exists \(x \in R_p\) such that \(\eta_d = 1/x\), \(\eta_i \in y_i/x\) with some \(y_i \in R_p\). Therefore we have \((I_\alpha)_p = x R_p = (I_{\eta_d})_p\). Since \(p\) is arbitrary, we conclude that \(I_\alpha = I_{\eta_d}\).

Next we shall show that \(J_{\eta_d} = I_{\eta_d}\). Suppose that \(I_{\eta_d}(1, \eta_d) \subseteq p\) for some \(p \in \text{Spec}(R)\). Then \(I_\alpha \subseteq p\). Thus by the above notation, we have \((I_{\eta_d}(1, \eta_d))_p = x (1, 1/x) R_p = R_p\), which contradicts the assumption \(I_{\eta_d}(1, \eta_d) \subseteq p\). Therefore we conclude that \(J_{\eta_d} = R\).

(ii) \(\Rightarrow\) (i) follows the implications: \(R[\alpha] \supseteq I_\alpha R[\alpha] \supseteq I_\alpha(1, \eta_d) = I_{\eta_d}(1, \eta_d) = R \supseteq 1\), and hence \(R[\alpha] \supseteq I_\alpha R[\alpha] \supseteq R[\alpha]\). \(\square\)

Corollary 1.2. Assume that \(\alpha\) is an anti-integral element over \(R\). If \(I_\alpha R[\alpha] = R[\alpha]\), then \(R[\alpha] \cap K = R[\eta_d]\).

Proof. Put \(C := R[\eta_1, \ldots, \eta_d]\). Then by the proof of Proposition 1.1, we have \(C \subseteq R[\alpha]\). Since \(R[\alpha]\) is a free \(C\)-module \(C + C \alpha + \cdots + C \alpha^{d-1}\), we conclude that \(R[\alpha] \cap K = C\). Besides, as in the proof of Proposition 1, if \(I_\alpha \subseteq p\), then there exists \(x \in R_p\) such that \(\eta_d = 1/x\) and \(y_i \in y_i/x \in R_p[\eta_d]\) for some \(y_i \in R_p\). If \(I_\alpha \not\subseteq p\), then \(C_p = R_p = R_p[\eta_d]\). Therefore we have \(C = R[\eta_d]\). \(\square\)

Lemma 1.3. \(I_{\alpha^{-1}} = \eta_d I_\alpha\).

Proof. Since \(\varphi_{\alpha^{-1}}(X) = X^d + (\eta_d^{-1} \eta_{d-1}) X^{d-1} + \cdots + (\eta_1^{-1} \eta_1) X + \eta_1^{-1}\), we have \(I_{\alpha^{-1}} = \bigcap_{i=1}^{d-1} I_{\eta_d^{-1}, \eta_i} \cap I_{\eta_d^{-1}}\). Take \(x = \eta_d y \in \eta_d I_\alpha\) with \(y \in I_\alpha\). Then \(x \eta_d^{-1} \eta_i = y \eta_i \in R\) and hence \(x \eta_d^{-1} = y \in R\). Thus \(I_{\alpha^{-1}} \supseteq \eta_d I_\alpha\). Conversely,
take $x \in I_{[\alpha^{-1}]}$. Then $x\eta_{d}^{-1} = y \in R$, $y\eta_{d} = x \in R$ and $x\eta_{d}^{-1}\eta_{i} = y\eta_{i} \in R$. Hence $y \in I_{[\alpha]}$. Therefore we have $I_{[\alpha^{-1}]} = \eta_{d} I_{[\alpha]}$.

Remark 1.4. (i) An element α is anti-integral over R if and only if so is α^{-1} (cf. [KY]).

(ii) An element α is super-primitive over R if and only if so is α^{-1}. Indeed, the minimal monic polynomial $\varphi_{\alpha^{-1}}$ of α^{-1} is $X^{d} + (\eta_{d-1}/\eta_{d})X^{d-1} + \cdots + (\eta_{1}/\eta_{d})X + (1/\eta_{d})$. Hence we have

$$J_{[\alpha^{-1}]} = I_{[\alpha^{-1}]}(1, \eta_{d-1}/\eta_{d}, \ldots, \eta_{1}/\eta_{d}) = \eta_{d} I_{[\alpha]}(1, \eta_{d-1}/\eta_{d}, \ldots, \eta_{1}/\eta_{d}) = I_{[\alpha]}(1, \eta_{1}, \ldots, \eta_{d}) = J_{[\alpha]}$$

here we use Lemma 1.3. So our assertion follows from the definition of super-primitiveness.

Theorem 1.5. Assume that α is an anti-integral element over R and that $\eta_{d} \in R[\alpha]$. The following statements are equivalent:

(i) $I_{[\alpha]} R[\alpha] = R[\alpha]$;

(ii) $I_{[\alpha]} + I_{[\alpha^{-1}]} = R$;

(iii) either α or α^{-1} is integral over R_{p} for each $p \in \text{Spec}(R)$.

Proof. (i) \Rightarrow (ii): We have $\eta_{d} \in R[\alpha], I_{[\alpha]} = I_{\eta_{d}}$ and $J_{\eta_{d}} = R$ by Proposition 1.1. So we obtain $R = J_{\eta_{d}} = I_{\eta_{d}}(1, \eta_{d}) = I_{[\alpha]}(1, \eta_{d}) = I_{[\alpha]} + \eta_{d} I_{[\alpha]} = I_{[\alpha]} + I_{[\alpha^{-1}]}$ (cf. Lemma 1.3).

(II) \Rightarrow (i): We have $R = I_{[\alpha]} + I_{[\alpha^{-1}]} = I_{[\alpha]} + \eta_{d} I_{[\alpha]} = I_{[\alpha]}(1, \eta_{d})$. Thus $R[\alpha] = I_{[\alpha]}(1, \eta_{d}) R[\alpha] = I_{[\alpha]} R[\alpha] + I_{[\alpha]} \eta_{d} R[\alpha] \subseteq I_{[\alpha]} R[\alpha]$ because $\eta_{d} \in R[\alpha]$. The converse inclusion is obvious. Thus $I_{[\alpha]} R[\alpha] = R[\alpha]$.

(III) \Rightarrow (iii): Take $p \in \text{Spec}(R)$. Then $I_{[\alpha]} \not\subseteq p$ or $I_{[\alpha^{-1}]} \not\subseteq p$ because $I_{[\alpha]} + I_{[\alpha^{-1}]} = R$. If $I_{[\alpha]} \not\subseteq p$, we have $\eta_{1}, \ldots, \eta_{d} \in R_{p}$. Hence $\alpha^{d} + \eta_{1} \alpha^{d-1} + \cdots + \eta_{d} = 0$, which means that α is integral over R_{p}. Next, we assume that $I_{[\alpha^{-1}]} \not\subseteq p$. The $\eta_{d}^{-1}\eta_{1}, \ldots, \eta_{d}^{-1}\eta_{d-1}, \eta_{d}^{-1} \in R_{p}$. Thus $(\alpha^{-1})^{d} + (\eta_{d}^{-1})\alpha^{d-1} + \cdots + \eta_{d}^{-1}\eta_{1}\alpha + \eta_{d}^{-1} = 0$, which means that α^{-1} is integral over R_{p}.

(iii) \Rightarrow (ii): Suppose that there exists a prime ideal p of R such that $I_{[\alpha]} + I_{[\alpha^{-1}]} \subseteq p$. Note that α or α^{-1} is integral over R_{p}. Assume that α is integral over R_{p}. Then α satisfies a monic relation of degree d over R_{p} because α is anti-integral over R_{p}. But since $\varphi_{\alpha}(X) = X^{d} + \eta_{1} X^{d-1} + \cdots + \eta_{d} \in R_{p}[X]$, we have $I_{[\alpha]} \not\subseteq p$, a contradiction. Similarly we come to a contradiction when we assume α^{-1} is integral over R_{p}.

Proposition 1.6. Assume that α is an anti-integral element of degree d over R. If $\eta_{d} \in R[\alpha]$, then $\sqrt{I_{[\alpha]} R[\alpha]} \cap R = \sqrt{I_{[\alpha]} + I_{[\alpha^{-1}]}}$.

Proof. Take $p \in \text{Spec}(R)$. Then $I_{[\alpha]} R[\alpha] \cap R \not\subseteq p \Leftrightarrow I_{[\alpha]} R_{p}[\alpha] = R_{p}[\alpha] \Leftrightarrow (I_{[\alpha]} + I_{[\alpha^{-1}]})_{p} = R_{p} \Leftrightarrow I_{[\alpha]} + I_{[\alpha^{-1}]} \not\subseteq p$. Thus we come to our conclusion by Theorem 1.5.

§2. Conditions for anti-integral elements to be exclusive.

Recall first that an algebraic element α over R is called to be exclusive if $R[\alpha] \cap K = R$. Put $\tilde{J}_{[\alpha]} := I_{[\alpha]}(1, \eta_1, \ldots, \eta_{d-1})$, an ideal of R.

Remark 2.1. Assume that R contains a field k. Let x be an indeterminate and put $S := R \otimes_k k(x)$. Then S contains the infinite field $k(x)$. Put $I_{[\alpha]}^S := \bigcap_{i=1}^d (S : s \eta_i)$, $J_{[\alpha]}^S := I_{[\alpha]}^S(1, \eta_1, \ldots, \eta_d)S$ and $\tilde{J}_{[\alpha]}^S := I_{[\alpha]}^S(1, \eta_1, \ldots, \eta_{d-1})S$.

Since S is faithfully flat over R, $I_{[\alpha]}^S = I_{[\alpha]}^S$, $J_{[\alpha]}^S = J_{[\alpha]}^S$ and $\tilde{J}_{[\alpha]}^S = \tilde{J}_{[\alpha]}^S$. So if α is super-primitive (resp. anti-integral) over R, then so is α over S. Moreover α is exclusive over S if and only if α is exclusive over R; that is, α is exclusive over S, i.e., $S[\alpha] \cap K(x) = S[\alpha]$ if and only if α is exclusive over R, i.e., $R[\alpha] \cap K = R$.

Lemma 2.2. Assume that α is super-primitive over R. Then the following statements (i) and (ii) are equivalent:

(i) $\bigcap_{i=1}^{d-1} I_{\eta_i} \subset I_{\eta_d}$;
(ii) grade($\tilde{J}_{[\alpha]}$) > 1 or $\tilde{J}_{[\alpha]} = R$.

Furthermore if R contains a field, then the following (iii) is equivalent to (i):

(iii) α is exclusive over R.

Proof. (i) \Leftrightarrow (ii) follows from [OY2, Lemma 3].

Next assume that R contains a field. We may assume that R contains an infinite field by Remark 2.1. Hence our conclusion (ii) \Leftrightarrow (iii) follows from [OY2, Theorem 5].

Remark 2.3. Assume that R contains a field.

(i) When α is a super-primitive element over R, α is exclusive over R if and only if grade($\tilde{J}_{[\alpha]}$) > 1 by Lemma 2.2.

(ii) $\tilde{J}_{[\alpha]} = I_{[\alpha]}(\eta_1, \ldots, \eta_d)$. This follows from the similar argument of Remark 1.4(ii).

(iii) By Remark 1.4, α is super-primitive over R if and only if α is exclusive over R. Hence our conclusion (i) \Leftrightarrow (ii) above.

(iii) If grade($I_{[\alpha]}(\eta_1, \ldots, \eta_{d-1})$) > 1, then both α and α^{-1} are exclusive over R by (i), (ii) and (iii).

Proposition 2.4. Assume that α is an anti-integral element of degree d over R. If $I_{[\alpha]} R[\alpha] P = R[\alpha] P$ for every $P \in \text{DP}_1(R[\alpha])$, then $R[\alpha] \cap K = R[\eta_1, \ldots, \eta_d]$.

Proof. It follows that $R[\alpha] P \supset I_{[\alpha]}^{-1} I_{[\alpha]} R[\alpha] P = I_{[\alpha]}^{-1} R[\alpha] P \supset I_{[\alpha]}^{-1} \cap \eta_1, \ldots, \eta_d$ because $\bigcap_{P \in \text{DP}_1(R)} R[\alpha] P = R[\alpha]$. Thus $R[\alpha] \cap K \supset R[\eta_1, \ldots, \eta_d] = C$, α is integral over C and α is anti-integral over C. Since
$K(C) = K$ and $[K(\alpha) : K] = d$, $R[\alpha]$ is a free C-module $C + C\alpha + \cdots + C\alpha^{d-1}$. Hence $R[\alpha] \cap K = C$, as was to be shown.

Theorem 2.5. Assume that α is a super-primitive element of degree d over R and that R contains a field. Let $\phi : \text{Spec}(R[\alpha]) \to \text{Spec}(R)$ be the canonical map induced from the inclusion $R \subseteq R[\alpha]$. Then the following statements are equivalent:

(i) $D_{p_1}(R)$ is contained in the image of ϕ, i.e., $\text{Im}(\phi) \supseteq D_{p_1}(R)$;

(ii) α is exclusive over R.

Proof. $\text{Im}(\phi) \supseteq D_{p_1}(R)$ if and only if $J_{[\alpha]}/p = J_{[\alpha]}/p = R_p$ for every $p \in D_{p_1}(R)$ by [OY2, Lemma 2]. Since α is super-primitive over R, we see that grade$(J_{[\alpha]}) > 1$. Hence we have grade$(J_{[\alpha]}) > 1$, that is, $J_{[\alpha]}/p = R_p$ for every $p \in D_{p_1}(R)$. So we conclude that α is exclusive over R by Lemma 2.2.

Conversely, the set of diffusing points (i.e., $p \in \text{Spec}(R)$ such that $pR[\alpha]/p = R[\alpha]/p$) is given by $\bigcap_{i=1}^{d-1} V(I_{[\alpha]}/\eta_i) \setminus V(I_{[\alpha]}/\eta_d) = V(J_{[\alpha]}) \setminus V(I_{[\alpha]}/\eta_d)$ by [OY2, Lemma 2]. So take $p \in D_{p_1}(R)$ such that $pR[\alpha]/p = R[\alpha]/p$. Then $p \supseteq J_{[\alpha]}$ and $p \supseteq I_{[\alpha]}/\eta_d$. Thus we have grade$(J_{[\alpha]}) = 1$, which yields that α is not exclusive over R by Lemma 2.2. Hence $qR[\alpha]/q \neq R[\alpha]/q$ for all $q \in \text{Im}(\phi)$.

Proposition 2.6. Assume that $\alpha_1, \ldots, \alpha_n$ are super-primitive elements over R and that R contains a field. Put $A := R[\alpha_1, \ldots, \alpha_n]$ and let $\phi : \text{Spec}(A) \to \text{Spec}(R)$ be the canonical map induced from the inclusion $R \subseteq A$. If $D_{p_1}(R)$ is contained in the image of ϕ, then each α_i $(1 \leq i \leq n)$ is exclusive over R.

Proof. Let $\psi_i : \text{Spec}(A) \to \text{Spec}(R[\alpha_i])$ and $\phi_i : \text{Spec}(R[\alpha_i]) \to \text{Spec}(R)$ be the canonical maps induced from the inclusion $R[\alpha_i] \subseteq A$ and $R \subseteq R[\alpha_i]$, respectively. Then $\phi = \phi_i \cdot \psi_i$ induces the inclusions $\text{Im}(\phi_i) \supseteq \text{Im}(\phi) \supseteq D_{p_1}(R)$. Thus our conclusion follows Theorem 2.5.

Problem. Is the converse statement of Proposition 2.6 valid?

Proposition 2.7. Assume that α is a super-primitive element of degree d over R. If $\eta_d \in R$, then the canonical map $\phi : \text{Spec}(R[\alpha]) \to \text{Spec}(R)$ is surjective.

Proof. Note that $\phi : \text{Spec}(R[\alpha]) \to \text{Spec}(R)$ is surjective if and only if $V(J_{[\alpha]}) = V(J_{[\alpha]}/\eta_d) \subseteq V(I_{[\alpha]}/\eta_d)$ (cf. [KY1, Theorem 7], [OY2, Lemma 2]). Since $\eta_d \in R$, we have $\eta_d I_{[\alpha]} \subseteq I_{[\alpha]}$, which implies that $V(J_{[\alpha]}) = V(J_{[\alpha]})$ by the construction of $J_{[\alpha]}$. So we have our conclusion.

Note that $\phi : \text{Spec}(R[\alpha]) \to \text{Spec}(R)$ is surjective and ϕ is flat if and only if ϕ is faithfully flat. So we obtain the following corollary.

Corollary 2.8. Assume that $\eta_d \in R$. If $R[\alpha]$ is flat over R, then $R[\alpha]$ is faithfully flat over R.

The following proposition gives rise to a condition for $\eta_d \in R$.
PROPOSITION 2.9. Assume that α is a super-primitive element of degree d over R and that R contains a field. Then the following statement are equivalent:

(i) $\eta_d \in R$;
(ii) α is exclusive over R and $I_{\eta_d}R[\alpha] = R[\alpha]$.

Proof. (i) \Rightarrow (ii) follows from Lemma 2.2.
(ii) \Rightarrow (i): Since $\eta_d \in I_{\eta_d}^{-1}R[\alpha] = I_{\eta_d}^{-1}I_{\eta_d}R[\alpha] \subseteq R[\alpha]$, we conclude that $\eta_d \in R[\alpha] \cap K = R$. \(\square\)

REMARK 2.10. Let I denote an ideal of R. Then

$$\text{grade}(I) > 1 \iff I^{-1} = R,$$

where $I^{-1} := R :_K I$.

Theorem 2.11. Assume that α is an anti-integral element of degree d over R. Let $f : \text{Spec}(R[\alpha]) \rightarrow \text{Spec}(R)$ and $g : \text{Spec}(R[\eta_d]) \rightarrow \text{Spec}(R)$ be the canonical maps obtained from the inclusions $R \subseteq R[\alpha]$ and $R \subseteq R[\eta_d]$, respectively. If $\text{grade}_{R[\alpha]}(J_1R[\alpha]) > 1$, $\text{grade}_{R[\alpha]}(J_{\eta_d}R[\alpha]) > 1$ and $\text{grade}_{R[\eta_d]}(J_1R[\eta_d]) > 1$, then $R[\alpha] \cap K = R[\eta_d]$ and $\text{Im}(f) = \text{Im}(g)$.

Proof. First note that $J_1R[\eta_d] \subseteq J_{R[\eta_d]}^0$ (here we use the notation as in Remark 2.1; put $S = R[\eta_d]$). So $\text{grade}_{R[\eta_d]}(J_1R[\eta_d]) > 1$ yields that $\text{grade}_{R[\alpha]}(J_{1R[\alpha]}) > 1$, so that α is super-primitive over $R[\eta_d]$. Take $P \in \text{Dp}_1(R[\alpha])$ and put $p := P \cap R$. Since $J_1R[\alpha] \not\subseteq P$, we have either $J_1[\alpha] \not\subseteq p$ or $I_{\eta_d} \not\subseteq p$. Thus $R_p[\alpha]$ is flat over R_p (cf. [OY]). So we have $I_{\eta_d}R_p[\alpha] = (R :_{R_p} \eta_d)R_p[\alpha] = R_p[\alpha] :_{R_p} \eta_d = R_p[\alpha]$. Thus $\eta_d \in R_p[\alpha]$ by Proposition 1.1. Therefore $\eta_d \in \bigcap_{P \in \text{Dp}_1(R[p])} R[p] = R[\alpha]$. As mentioned above, α is super-primitive over $R[\eta_d]$. Since $\eta_d \in R[\eta_d]$, α is exclusive over $R[\eta_d]$. Hence the canonical map $\psi : \text{Spec}(R[\alpha]) \rightarrow \text{Spec}(R[\eta_d])$ is surjective by Proposition 2.7. Consider the following commutative diagram:

$$
\begin{array}{ccc}
\text{Spec}(R[\eta_d][\alpha]) & \longrightarrow & \text{Spec}(R[\alpha]) \\
\phi \downarrow & & \downarrow g \\
\text{Spec}(R[\eta_d]) & \longrightarrow & \text{Spec}(R),
\end{array}
$$

here we use that $\eta_d \in R[\alpha]$. Since ψ is surjective and $f \cdot \psi = g$, we conclude that $\text{Im}(f) = \text{Im}(g)$. \(\square\)

We say that α is an ultra-primitive element of degree d over R if $\text{grade}(I_{\alpha} + C(R/R)) > 1$, where R denotes the integral closure of R in K and $C(R/R)$ denotes the conductor between R and \overline{R} (cf. [OY3]).

Proposition 2.12. Assume that an ultra-primitive element of degree d. If $\text{grade}(I_{\alpha} : R I_{\alpha-1}) > 1$, then $\eta_d \in R$.

Proof. Take $P \in \text{Dp}_1(R)$. Then either $I_{\alpha} \not\subseteq p$ or $C(R/R) \not\subseteq p$. If $I_{\alpha} \not\subseteq p$, then $J_1 \subseteq I_{\eta_d} \not\subseteq p$, that is, $\eta_d \in R_p$. If $I_{\alpha} \subseteq p$, then $C(R/R) \not\subseteq p$ and hence...
Denominator Ideals to Diffuse and Elements to Be Exclusive in Anti-Integral Extensions

R_p is a normal domain. Note that $I_{[\alpha^{-1}]p} = \eta_d I_{[\alpha]p} \subseteq I_{[\alpha]p}$ (cf. Lemma 1.3). The latter inclusion $\eta_d I_{[\alpha]p} \subseteq I_{[\alpha]p}$, that is, $\eta_d \subseteq (I_{[\alpha]} : R I_{[\alpha]})_p$ implies that η_d is integral over R_p, noting that $I_{[\alpha]p}$ is finitely generated over R_p. So we have $\eta_d \in R_p$. Therefore $\eta_d \in \bigcap_{p \in \mathcal{DP}(R)} R_p = R$. □

References

