ROSEリポジトリいばらき（茨城大学学術情報リポジトリ）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Some Theorems for Semigroups</td>
</tr>
<tr>
<td>Author(s)</td>
<td>MATSUDA, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 30: 1-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3063</td>
</tr>
<tr>
<td>Rights</td>
<td>このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
Some Theorems for Semigroups

RYÜKI MATSUDA*

Dedicated to Professor Hasumi
on his retirement from Ibaraki University

In Zariski-Samuel[10], Theorems 30 and 31 of Ch.IV, and Theorems 7 and 14 of Ch.V are, without saying, important theorems in commutative ring theory. And so is Theorem A of Appendix 2 of Gilmer[2]. The aim of this paper is to prove these theorems for semigroups. We will prove all these theorems for semigroups except [10,Ch.IV,Theorem 31]. We will prove [10,Ch.IV,Theorem 31] for semigroups of dimensions 1 and 2.

A subsemigroup A_0 of a torsion-free abelian (additive) group is called a g-monoid. Explicitly, semigroups we mentioned above mean g-monoids. Many propositions for commutative rings are known to hold for g-monoids. The author conjectures that almost all propositions in multiplicative ideal theory hold for g-monoids (cf.[5]).

Let Z_0 be the non-negative integers. A g-monoid S of the form $\sum_i^n Z_0 s_i$ for a finite number of elements s_1, \ldots, s_n of S is called a finitely generated semigroup. Let P be a prime ideal of a g-monoid S. Then the height $ht(P)$ of P is naturally defined. If there exist no prime ideals $\notin P$, then $ht(P) = 1$. The semigroup ring of a g-monoid S over a commutative ring R is denoted by $R[X;S]$, where X is a symbol.

LEMMA 1. Let I be a proper ideal in a finitely generated semigroup S. If I is r-generated, that is, generated by r elements of S, then every prime ideal P minimal among containing I has height at most r.

PROOF. Let k be a field. Then the semigroup ring $k[X;S]$ of S over k is a Noetherian ring, and $Pk[X;S]$ is a prime ideal minimal among containing $I k[X;S]$. Therefore $ht(Pk[X;S]) \leq r$. Hence $ht(P) \leq r$.

If every ideal of a g-monoid S is finitely generated, S is called a Noetherian semigroup.

LEMMA 2. Let S be a Noetherian semigroup such that the unit group H of S is a free abelian group. Let I be a proper ideal in S generated by r elements a_1, \ldots, a_r. If the maximal ideal M of S is a prime ideal minimal among containing I, then $ht(M) \leq r$.

PROOF. Let $\{u_\lambda \mid \Lambda\}$ be a free generators of H. By Lemma 1, we may assume that $|\Lambda| = \infty$. Let p_1, \ldots, p_l be the set of non-associated irreducible

Received July 29, 1997.
1991 Mathematics Subject Classification. Primary 20M14, Secondary 13A15.
* Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan.
elements of S. The quotient group G of S equals to $\sum_{\lambda} u_{\lambda} + \sum_i Zp_i$. There exist a subset Λ_1 and a finite subset $\{\lambda_1, \ldots, \lambda_n\}$ of Λ such that $G = \sum_{\lambda} u_{\lambda} \oplus (\sum_i Zu_{\lambda_i} + \sum_i Zp_i)$. Let k be a field. $Mk[X; S]$ is a prime ideal minimal among containing $Ik[X; S]$. Set $S_1 = \sum_i Zu_{\lambda_i} + \sum_i Zp_i$, $D = k[X; \sum_{\lambda} u_{\lambda}]$, and let K be the quotient field $q(D)$ of D. We see that $Mk[X; S] = D[X; S_1]$, and $MK[X; S]$ is a prime ideal minimal among containing $(a_1, \ldots, a_r) K[X; S_1]$. It follows that $\text{ht}(MK[X; S_1]) \leq r$. Hence $\text{ht}(MK[X; S]) \leq r$. Therefore $\text{ht}(M) \leq r$.

Theorem 1. Let I be a proper ideal of a Noetherian semigroup S. If I is generated by r elements, then every prime ideal minimal among containing I has height at most r.

Proof. We may assume that P equals to the maximal ideal M of S. Let $\{u_{\lambda} \mid \Lambda\}$ be a maximal independent subset of the unit group H of S. By Lemma 1, we may assume that $|\Lambda| = \infty$. Let p_1, \ldots, p_r be the set of all non-associated irreducible elements of S. We may assume that M is a prime ideal minimal among containing (p_1, \ldots, p_r). Set $S_1 = \sum_{\Lambda} Zu_{\lambda} + \sum_i Zp_i$. Then S is integral over S_1, and the maximal ideal M_1 of S_1 is a prime ideal minimal among containing $(p_1, \ldots, p_r) S_1$. By Lemma 2, $\text{ht}(M_1) \leq r$. Hence $\text{ht}(M) \leq r$.

Let S be a g-monoid, and Y a non-empty set. Assume that, for each $s \in S$ and $x \in Y$, an element $s + x \in Y$ is determined, and, for each s_1 and s_2 of S, $(s_1 + s_2) + x = s_1 + (s_2 + x)$, and $0 + x = x$. Then Y is called an S-module.

Theorem 2. Let S be an integrally closed semigroup, G its quotient group, L an extension torsion-free abelian group of G with $(L : G) = n < \infty$, and T the integral closure of S in L. Then there exists a complete representative system x_1, \ldots, x_n of L modulo G such that T is contained in the S-module $\bigcup_i (S + xi)$.

Proof. Let k be a field of characteristic 0. Then $k[X; S]$ is an integrally closed domain, the quotient field F of $k[X; T]$ is a finite separable algebraic extension of the quotient field K of $k[X; S]$, and $k[X; T]$ is the integral closure of $k[X; S]$ in F. Hence there exists a basis $\{\varphi_1, \ldots, \varphi_m\}$ of F over K such that $k[X; T]$ is contained in the $k[X; S]$-module $\sum_i k[X; S] \varphi_i$. Therefore there exist elements $\alpha_1, \ldots, \alpha_l$ of L such that $T \subset \bigcup_i (S + \alpha_i)$. Let $\{x_1, \ldots, x_n\}$ be a complete representative system of L modulo G. We may assume that $\{x_1, \ldots, x_n\} \subset \{\alpha_1, \ldots, \alpha_l\}$. For each i, α_i is contained in $x_j + G$ for some j. Therefore $\alpha_i - x_j + a_i \in S$ for some $a_i \in S$. Put $s = a_1 + \ldots + a_l$. Then we see that $S + \alpha_i \subset S + x_j - s$. It follows that $T \subset \bigcup_i (S + x_i - s)$.

Proposition 1. Let S be a Noetherian semigroup, and Y be a finitely generated S-module. Then Y satisfies the a.c.c. on submodules.

Proof. It is sufficient to consider the case where Y is a cyclic module $S+x$. Suppose that $Y_1 \subset Y_2 \subset \cdots$ be an ascending chain of submodules of Y. For each i, let $A_i = \{a \in S \mid a + x \in Y_i\}$. Then $A_1 \subset A_2 \subset \cdots$ is an ascending chain of ideals of S. There is an n such that $A_i = A_n$ for each $i > n$. Then $Y_i = Y_n$ for each $i > n$.

Theorem 2 and Proposition 1 imply the following,
Corollary 1. The assumptions being the same as in Theorem 2, let us furthermore assume that S is Noetherian. Then T is a finitely generated S-module and is a Noetherian semigroup.

Lemma 3. Let S be a Noetherian semigroup, A and B be two ideals of S such that $A \neq S$. Then $A = A :_S B$ if and only if B is contained in no prime ideal of A.

The proof is an analogy for semigroups of the proof of [10, Ch.IV, Theorem 11].

Lemma 4. Let S be a Noetherian integrally closed semigroup, and P be a maximal ideal of S. If P is a prime ideal of a principal ideal (y), then P is a principal ideal.

Proof. We have $(y) :_S P \subseteq (y)$ by Lemma 3. Choose an element x of $(y) :_S P$ such that $x \notin (y)$. Then $x - y \notin P$, and $x - y \notin S$. Suppose that $P + P^{-1} \subseteq S$. Then we have $P = P + P^{-1}$. Set $P = (x_1, \ldots, x_n)$, and put $z = x - y$. Then $z + x_i \in P$ for each i. We may assume that $z + x_1 = x_2 + r_1, z + x_2 = x_3 + r_2, \ldots, z + x_k = x_1 + r_k$ for some $k \geq 1$ and for some elements r_1, \ldots, r_k of S. Then we have $kz = r_1 + \cdots + r_k \in S$. Hence $x - y = z \in S$; a contradiction. We have proved that $P + P^{-1} = S$. There exist $p \in P$ and $q \in P^{-1}$ such that $p + q = 0$. Then we have $P = (p)$.

Lemma 5. Let A be a proper ideal of a g-monoid S admitting an irredundant primary representation $A = \bigcap_1^n Q_i$. Let T be an additive system of S, and suppose that, for $1 \leq i \leq r$, we have $Q_i \cap T = \emptyset$, and that, for $r + 1 \leq j \leq n$, we have $Q_j \cap T \neq \emptyset$. Then $AS_T = \bigcap_1^n (Q_iS_T)$ is an irredundant primary representation of AS_T.

The proof is straightforward.

Theorem 3. In an integrally closed Noetherian semigroup S, each prime ideal P of any proper principal ideal (y) has height 1.

Proof. SP is a Noetherian integrally closed semigroup, and PS_P is a maximal ideal of SP which is a prime ideal of a principal ideal ySP by Lemma 5. Lemma 4 implies that PS_P is a principal ideal. Therefore PS_P has height 1. Hence P has height 1.

Let P be a prime ideal of a g-monoid S. If P is the only P-primary ideal of S, then P is called unbranched.

Theorem 4. Let V be a nontrivial valuation semigroup with quotient group L, and suppose that V is of the form $G \cup M$, where G is a group and M is the maximal ideal of V. Let S be a g-monoid which is a proper subsemigroup of G, and let $S_1 = S \cup M$.

(1) S_1 is a g-monoid and M is the conductor of S_1 in V. Therefore, S_1 and V have the same complete integral closure. In particular, S_1 is not completely integrally closed.
(2) The integral closure of S_1 is $\bar{S} \cup M$, where \bar{S} is the integral closure of S in G.

(3) Each ideal of S_1 compares with M under \subset.

(4) The set of ideals of S_1 containing M is M and $\{A_\alpha \cup M \mid \alpha\}$ where $\{A_\alpha \mid \alpha\}$ is the set of ideals of S. If $A_{\alpha_1} \cup M = A_{\alpha_2} \cup M$, then $A_{\alpha_1} = A_{\alpha_2}$. M is a prime ideal of S_1. Further, A_α is maximal, prime, or P_α-primary in S if and only if $A_\alpha \cup M$ is, respectively, maximal, prime, or $(P_\alpha \cup M)$-primary in S_1. If T_α is a generating set for A_α as an ideal of S, then T_α is also a generating set for $A_\alpha \cup M$ as an ideal of S_1.

(5) If Q is P-primary in S_1, where $P \subsetneq M$, then Q and P are ideals of V and Q is P-primary in V. If M, as an ideal of V, is unbranched, then M is also unbranched as an ideal of S_1.

(6) $\dim S_1 = \dim S + \dim V$.

(7) If N is an additive system in S, then $(S_1)_N = S_N \cup M$. If P is prime in S_1 and if $P \subsetneq M$, then $(S_1)_P = V_P$ so that $(S_1)_P$ is a valuation semigroup.

(8) S_1 is a valuation semigroup on L if and only if S is a valuation semigroup on G.

(9) The valuative dimension of S_1 is equal to $k + \dim V$, where k is the maximal dimension of a valuation semigroup on G containing S. (k may be infinite.)

(10) The finitely generated ideals of S_1 which properly contain M are those of the form $A_\alpha \cup M$, where A_α is a finitely generated ideal of S. Any finitely generated ideal A of S_1 contained in M can be obtained as follows: let W be a finitely generated S-submodule of G, let $m \in M$, and set $A = (W+m) \cup (M+m)$.

(11) S_1 is Noetherian if and only if V is Noetherian, S is a group, and $(G:S) < \infty$.

Almost all of the proof of Theorem 4 is an analogy of the proof of [2, Appendix 2, Theorem A]. The sufficiency of (11): V is the integral closure of S_1. By the Mori-Nagata theorem for semigroups [6], V is Noetherian.

Let S be a 1-dimensional Noetherian semigroup, and M be a maximal ideal of S. Then, clearly, M is a prime ideal minimal among containing a 1-generated ideal of S.

Let S be a g-monoid, and x_1, \ldots, x_n be elements of an extension semigroup of S. Then $S + \sum_i \mathbb{Z}_0 x_i$ is called the semigroup generated by x_1, \ldots, x_n over S, and is denoted by $S[x_1, \ldots, x_n]$.

Theorem 5. Let S be a 2-dimensional Noetherian semigroup, and M be its maximal ideal. Then M is a prime ideal minimal among containing a 2-generated ideal of S.

Proof. Assume that M is l-generated. Assume that $l \geq 3$, and that our assertion holds for $l - 1$. Suppose that M is not a prime ideal minimal among containing a 2-generated ideal of S. We will derive a contradiction.

Let $M = (x_1, \ldots, x_l)$. We may assume that $\{x_1, \ldots, x_l\}$ is a complete representative system of irreducible elements of S. Let H be the unit group of S.

At first, we will show that, for each j, x_j is not integral over the semigroup $H[x_{\alpha} \mid \alpha \neq j]$ generated by $\{x_{\alpha} \mid 1 \leq \alpha \leq l, \alpha \neq j\}$ over H. Thus, suppose, for instance, that x_l is integral over $H[x_{x_1, \ldots, x_{l-1}}]$. Then $S_1 = H[x_{x_1, \ldots, x_{l-1}}]$ is a 2-dimensional Noetherian semigroup. And the maximal ideal M_1 of S_1 is generated by x_1, \ldots, x_{l-1}. Therefore M_1 is a prime ideal minimal among containing a 2-generated ideal $(y_1, y_2)S_1$ of S_1. Since S is integral over S_1, we see that M is a prime ideal minimal among containing $(y_1, y_2)S$; a contradiction.

Next, let y_1, \ldots, y_{l-1} be $l-1$ distinct members in $\{x_1, \ldots, x_l\}$. We will show that (y_1, \ldots, y_{l-1}) is a ht 1 prime ideal of S. Thus, suppose, for instance, that the ideal $I = (x_1, \ldots, x_{l-1})$ is not prime. Then any prime ideal which contains I contains x_l. Therefore x_l is integral over $H[x_{x_1, \ldots, x_{l-1}}]$; a contradiction.

Next, we will show that, for each $1 < i < j < k < l$, there exist natural numbers a_i and a_j such that $a_ix_i + a_jx_j$ belongs to the semigroup $H[x_{\alpha} \mid 1 \leq \alpha \leq k, \alpha \neq i, j]$ generated by $\{x_{\alpha} \mid 1 \leq \alpha \leq k, \alpha \neq i, j\}$ over H. We depend on the induction on k from l. Thus, assume that $k = l$. Let $P = (x_{\alpha} \mid \alpha \neq i)$ be the ideal of S generated by $\{x_{\alpha} \mid 1 \leq \alpha \leq l, \alpha \neq i\}$. Then P is a prime ideal of S, and P_S is a 1-dimensional Noetherian semigroup. Hence $P_S P$ is a prime ideal minimal among containing the ideal $x_l S_P$. Therefore, for each j, a_jx_j belongs to $x_l S_P$ for some natural number a_j. It follows that $a_ix_i + a_jx_j \in (x_l)$ for some $a_i \in \mathbb{Z}_0$. x_l is not a unit of S, x_j is not integral over $H[x_{\alpha} \mid \alpha \neq j]$, and x_i is not integral over $H[x_{\alpha} \mid \alpha \neq i]$. Therefore $a_i > 0$, and moreover $a_ix_i + a_jx_j \in H[x_{\alpha} \mid \alpha \neq i, j]$.

Next, assume that $1 < i < j < k < l$, and that the assertion holds for $k + 1$. There exist natural numbers a_i and a_j such that $a_ix_i + a_jx_j \in H[x_{\alpha} \mid 1 \leq \alpha \leq k + 1, \alpha \neq i, j]$. Suppose that $a_ix_i + a_jx_j \in H[x_{\alpha} \mid 1 \leq \alpha \leq k, \alpha \neq i, j]$. Then we have $a_ix_i + a_jx_j = a_{k+1}x_{k+1} + \sum_{\alpha \neq i, j}^k b_{\alpha}x_{\alpha} + h_1(a_{k+1} > 0, \text{each } b_{\alpha} \geq 0, h_1 \in H)$, where $\sum_{\alpha \neq i, j}$ means that α ranges over $1 \leq \alpha \leq k$ with $\alpha \neq i, j$. Also we have $x_{k+1} = c_{k+1} + h_2(c_{k+1} > 0, d_{\beta} \geq 0, h_2 \in H)$. We may assume that $a_{k+1} = c_{k+1}$. Since x_i is not integral over $H[x_{\alpha} \mid 1 \leq \alpha \leq k, \alpha \neq i]$, we have $a'_i x_i + a'_j x_j = \sum_{\alpha \neq i, j} b'_{\alpha} x_{\alpha} + h'(a'_i, a'_j > 0; b'_\alpha \geq 0, h' \in H)$.

Now if we apply the above result for $i = 2, j = 3, k = 3$, we have $a_2x_2 + a_3x_3 \in H[x_1]$ for natural numbers a_2, a_3. Therefore x_1 is integral over $H[x_2, x_3]$; a contradiction.

The motive of this paper, first, was to prove all such propositions in [10] and in [2] for g-monoids S that have meaning for S. All these propositions in [10] except [10, Theorems 30 and 31 of Ch.IV, Theorems 7 and 14 of Ch.V] have been proved for g-monoids. However, since they have not been published, we will state them briefly, for convenience. A semigroup version of [3] is under preparation in [4]. The only such propositions in [2] that is not contained in [3] and has meaning for S is [2, Appendix 2, Theorem A].

Let Y be an S-module. Let $Y = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_r$ be submodules of Y. If, for each i, there exist no submodules Y_i' such that $Y_i \supseteq Y_i' \supseteq Y_{i+1}$, then the chain of submodules of Y is called a composition series of length r.

Proposition 2. If an S-module Y has one composition series of length r,
then every composition series of \(Y \) has length \(r \).

The proof of Proposition 2 appears on [8].

Proposition 3. If \(S \) is a Noetherian semigroup, then so is any semigroup \(S[x_1, \ldots, x_n] \) generated by a finite number of elements \(x_1, \ldots, x_n \) over \(S \).

Proof. Let \(X_1, \ldots, X_n \) be indeterminates. Then [9, Theorem 69'] shows that \(S[X_1, \ldots, X_n] \) is a Noetherian semigroup. Let \(I \) be an ideal of \(S[x_1, \ldots, x_n] \). Set \(J = \{ s + \sum k_i X_i \mid \text{each } k_i \geq 0, s + \sum k_i x_i \in I \} \). Then \(J \) is a finitely generated ideal of \(S[X_1, \ldots, X_n] \). It follows that \(I \) is a finitely generated ideal of \(S[x_1, \ldots, x_n] \).

Proposition 4. Let \(S \) be a Noetherian semigroup. Then every proper ideal \(I \) of \(S \) admits an irredundant primary representation \(I = \bigcap_1^n Q_i \). The set of prime ideals \(\sqrt{Q_1}, \ldots, \sqrt{Q_n} \) are uniquely determined by \(I \).

The proof of Proposition 4 appears on [7, (1.1) Proposition] and [8].

Proposition 5. Let \(S \) be a Noetherian semigroup and \(I \) a proper ideal of \(S \). Then \(\bigcap_1^n nI = \emptyset \).

The proof of Proposition 5 appears on [9, Proposition 77].

Proposition 6. Let \(S \) be a g-monoid, \(T \) an extension semigroup which is integral over \(S \). If \(P \) is a prime ideal of \(S \), then there exists a unique prime ideal \(Q \) of \(T \) lying over \(P \).

Proof. Let \(\Sigma \) be the family of all ideals \(J \) of \(T \) so that \(J \cap (S - P) = \emptyset \). Then \(\Sigma \) is not empty. Let \(Q \) be a maximal member of \(\Sigma \) under the inclusion relation. Then \(Q \) is a prime ideal of \(T \), and lies over \(P \).

Proposition 7. Let \(S \) be a g-monoid, and \(S' \) an extension semigroup of \(S \) which is integral over \(S \). If \(P \) and \(Q \) are prime ideals in \(S \) such that \(Q \subseteq P \), and if \(P' \) is a prime ideal of \(S' \) lying over \(P \), then there exists a prime ideal \(Q' \) of \(S' \) uniquely, contained in \(P' \) and lying over \(Q \).

Proof. There exists a prime ideal \(Q' \) of \(S' \) uniquely which lies over \(Q \) by Proposition 6. Let \(x \in Q' \). We have \(nx \in S \) for some \(n > 0 \). Then \(nx \in Q \subseteq P \subseteq P' \). It follows that \(Q' \subseteq P' \).

Proposition 8. Let \(V \) be a discrete valuation semigroup of rank 1, and \(L \) an extension torsion-free abelian group of the quotient group \(G \) of \(V \) with \((L : G) < \infty \). Then the integral closure \(W \) of \(V \) in \(L \) is a discrete valuation semigroup of rank 1.

For the proof, choose elements \(x_1, \ldots, x_n \) in \(W \) such that the quotient group of \(V[x_1, \ldots, x_n] \) is \(L \). \(V[x_1, \ldots, x_n] \) is a Noetherian semigroup by Proposition 3. Then \(W \) is a 1-dimensional Krull semigroup by [6]. Hence \(W \) is a discrete valuation semigroup of rank 1.

Question. If \(P \) is a prime ideal of height \(n \) in a Noetherian semigroup \(S \), then is \(P \) a prime ideal minimal among containing an \(n \)-generated ideal of \(S \)?
Some Theorems for Semigroups

References