<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>On some Properties between Rings and Semigroups</td>
</tr>
<tr>
<td>Author(s)</td>
<td>MATSUDA, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 29: 9-23</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3058</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術企画部学術情報課（図書館） 情報支援係

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
On some Properties between Rings and Semigroups

RYŪKI MATSUDA*

§1. On $|\Sigma'(D)|$

Let $\Sigma'(D)$ be the set of all semistar-operations on D.
Let $F'(S)$ be the set of nonempty subset I of $q(S) = G$ such that $S + I \subseteq I$.
A mapping $*: A \mapsto A^*$ on $F'(S)$ is called a semistar-operation on S if the following conditions hold for all $a \in G$ and $A, B \in F'(S)$:

1. $(a + A)^* = a + A^*$;
2. $A \subseteq A^*$; if $A \subseteq B$, then $A^* \subseteq B^*$; and
3. $(A^*)^* = A^*$.

Let $\Sigma'(S)$ be the set of all semistar-operations on S.

The following (1.1) ~ (1.3) were proved in [16].

(1.1). (1) Let D be a 4-dimensional integrally closed domain with exactly two maximal ideals. Then we have $|\Sigma'(D)| \geq 9$.

(2) Let D be a 4-dimensional integrally closed domain such that $|\Sigma'(D)| \leq 9$. Then D is a Prüfer ring with at most two maximal ideals.

If a commutative ring R has only one maximal ideals, then R is called a local ring.

(1.2). Let D be a 4-dimensional integrally closed domain and $|\Sigma'(D)| \leq 9$. Then $|\Sigma(D)| \leq 2$. Furthermore, if D is not local, then $|\Sigma(D)| = 2$.

(1.3). Let D be a 4-dimensional integrally closed domain which is not local. Then $|\Sigma'(D)| \leq 9$ if and only if the following conditions hold:

1. D is a Prüfer ring with exactly two maximal ideals M, N.
2. There exist prime ideals P_1, P_2 and P_3 of D such that $M \subseteq N \subseteq P_3 \subseteq P_2 \subseteq P_1 \subseteq (0)$.
3. $P_1D_{P_1}, P_2D_{P_2}, P_3D_{P_3}$ are principal.
4. One of MD_M and ND_N is principal and the other is not principal.
5. $|\Sigma(D)| = 2$.

(1.4) EXAMPLE. (1) Let $G = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ with the lexicographic order $e_1 > e_2 > e_3$, where $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$. $Ze_3 = H_2$ and $Ze_2 + Ze_3 = H_1$ are the isolated subgroups of G.

(2) Let k be a field. For every element $f = \sum a_iX^{n_i}$ of $k[G] = k[X; G]$, we set $u_3(f) = \inf_{i} (g_i)$. Then u_3 is a valuation on $q(k[G])$. Let U_3 be the

Received October 7, 1996.
1991 Mathematics Subject Classification. Primary 20M14 Secondary 13A15.
* Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310, Japan.
valuation ring of \(u_3 \) and \(M_3 \) be the maximal ideal of \(U_3 \). Then \(\dim U_3 = 3 \), and \(M_3 = X^{e_3}U_3 \).

(3) Let \(u_2 \) be the natural composed mapping \(q(k[G]) \rightarrow G \cup \{ \infty \} \rightarrow (G/H_2) \cup \{ \infty \} \rightarrow (Ze_1 + Ze_2) \cup \{ \infty \} \). Then \(u_2 \) is a valuation on \(q(k[G]) \). Let \(U_2 \) be the valuation ring, and \(M_2 \) the maximal ideal of \(U_2 \). Then \(M_2 = X^{e_2}U_2 \).

(4) Let \(u_1 \) be the natural composed mapping \(q(k[G]) \rightarrow G \cup \{ \infty \} \rightarrow (G/H_1) \cup \{ \infty \} \rightarrow Ze_1 \cup \{ \infty \} \). Then \(u_1 \) is a valuation on \(q(k[G]) \). Let \(U_1 \) be the valuation ring of \(u_1 \), and \(M_1 \) the maximal ideal of \(U_1 \). Then \(M_1 = X^{e_1}U_1 \).

(5) The residue field \(U_3/M_3 \) is isomorphic onto \(k \). Let \(\phi : U_3 \rightarrow k \) be the natural mapping.

(6) Let \(V_1 \) be the valuation ring with maximal ideal \(M_1 \) of a valuation \(v_1 \) on \(k \). Set \(V = \phi^{-1}(V_1) \). Then \(V \) is a valuation ring of a valuation \(v \) on \(q(k[G]) \). Let \(M' \) be the maximal ideal of \(V \). Then \(M' \) is a principal ideal of \(V \) if and only if \(M_1 \) is a principal ideal of \(V_1 \).

(7) Let \(W_1 \) be the valuation ring of with maximal ideal \(N_1 \) on a valuation \(w_1 \) on \(k \). Let \(W = \phi^{-1}(W_1) \). Then \(W \) is a valuation ring of a valuation \(w \) on \(q(k[G]) \). Let \(N' \) be the maximal ideal of \(W \). Then \(N' \) is a principal ideal if and only if \(N_1 \) is a principal ideal of \(W_1 \).

(8) Let \(v_0 \) be a \(Z \)-valued valuation on a field \(k_0 \), and let \(k = q(k_0[Q]) \). Assume that \(v_1 \) is the natural extension of \(v_0 \) to \(q(k_0[Q]) \). Let \(V_1 \) be the valuation ring of \(v_1 \), and \(M_1 \) be the maximal ideal of \(V_1 \). Then \(v_1 \) is a \(Z \)-valued valuation, and \(M_1 \) is a principal ideal of \(V_1 \). For every element \(f = \sum a_iX^{r_i} \) of \(k_0[Q] \), put \(w_1(f) = \inf_i(r_i) \). Then \(w_1 \) is a valuation on \(q(k_0[Q]) \). Let \(W_1 \) be the valuation ring of \(W_1 \), and let \(N_1 \) be the maximal ideal of \(W_1 \). \(w_1 \) is a \(Q \)-valued valuation, and \(N_1 \) is not a principal ideal of \(W_1 \).

(9) Set \(D = V \cap W \), \(M = M' \cap D \) and \(N = N' \cap D \). Then \(D \) is a 4-dimensional Prufer domain with exactly two maximal ideals \(M \) and \(N \). \(D_M = V \) and \(D_N = W \). Put \(M_3 \cap D = P_3, M_2 \cap D = P_2 \) and \(M_1 \cap D = P_1 \). Then \(D_{P_3} = U_3, D_{P_2} = U_2 \) and \(D_{P_1} = U_1 \). \(M \cap N \not\subseteq P_3 \not\subseteq P_2 \not\subseteq P_1 \not\subseteq (0) \).

(1.5) Example. Let \(k \) be a field and \(y \) an indeterminate. Let \(q(k[y, X^\alpha] \mid \alpha \in R) = K \). Let \(v \) be the \(y \)-adic valuation, and \(V \) the valuation ring of \(v \). Let \(w \) be the natural extension of the identity mapping of \(R \), and \(W \) the valuation ring of \(w \). Set \(D = V \cap W \). Then \(|\Sigma(D)| = 2 \).

For the proof, let \((a, b) \) and \((c, d) \in Z \oplus R \). If \(a \leq c \) and \(b \leq d \), then set \((a, b) \leq (c, d) \). Then \(\leq \) is a partial order on \(Z \oplus R \). Let \(I \) be an ideal \(\neq (0) \) of \(D \). Put \(\chi(I) = \{(w(F), v(F)) \mid 0 \neq F \in I\} \). Then, for non-zero ideal \(I_1 \) and \(I_2 \) of \(D \), \(I_1 \subset I_2 \) if and only if \(\chi(I_1) \subset \chi(I_2) \). If \(\chi(I) \) has a minimum element, then \(I \) is a principal ideal of \(D \). If \(\chi(I) \) does not have a minimum element, then \(\chi(I) \) has an infimum \((\alpha, n)\). Then, \(X^{-\alpha}y^{-n}I = N \), where \(N \) is the center of \(w \) on \(D \). It follows that \(|\Sigma(D)| = 2 \).

§2. On pseudo-radicals

[21, Theorem 4] proved that (3.17) is yes for domains. There is a conjecture
that almost all multiplicative ideal theories hold for S ([13]). In the proof of [21, Theorem 4], [6] is used. In this section we will study a semigroup version of [6].

(2.1). If M_1, M_2, M_3 are prime ideals of $S[X]$ with $M_1 \subseteq M_2 \subseteq M_3$, then $M_1 \cap S \subseteq M_3 \cap S$. Also, if $M_1 \cap S = M_2 \cap S \neq \emptyset$ then $M_1 = M_1 + S[X]$. If $M_1 \cap S = \emptyset$, then M_1 is a minimal prime ideal of $S[X]$.

The intersection of all prime ideals of S is called the pseudo-radical of S.

(2.2). If an extension semigroup D_2 is integral over its subsemigroup D_1, if P_1^* is the pseudo-dradical of D_1, then $P_2^* \cap D_1 = P_1^*$.

(2.3). Let P^* be the pseudo-radical S. Then the following statements are equivalent:

1. $P^* \neq \emptyset$.
2. G is a simple semigroup extension of S.
3. G is a finite semigroup extension of S.

(2.4). (1) Let S be a Noetherian semigroup with the pseudo-radical P^*. If $P^* \neq \emptyset$, then S need not be 1-dimensional.

(2) Let S be a Krull semigroup with non-empty pseudo-radical P^*. Then S need not be a principal ideal semigroup.

For example, let k be a torsion-free abelian group $\neq \{0\}$, and let $k[X,Y]$ be the polynomial semigroup of X and Y over k. Then $k[X,Y]$ is 2-dimensional Noetherian semigroup with non-empty pseudo-radical. $k[X,Y]$ is integrally closed, and a Krull semigroup. The maximal ideal (X,Y) of $k[X,Y]$ is not principal.

(2.5). Assume that S is a valuation semigroup with non-empty pseudo-radical P^*. If P_0 is a height 1 prime ideal of S, then the complete integral closure S^* of S is SP_0; and S^* is completely integrally closed.

PROOF. SP_0 is a valuation semigroup of rank 1, hence SP_0 is completely integrally closed. Let v be the valuation associated with S, and let Γ be the value group. Put $H = \{v(x) | S \ni x \not\in P_0$ or $S \ni -x \not\in P_0\}$. Then $H \not\subseteq \Gamma$, and H is an isolated subgroup of Γ, and there is no isolated subgroup H' of Γ such that $H \subseteq H' \subseteq \Gamma$.

(2.6). Assume that $S \not\subseteq G$, and let M be the maximal ideal of S. Then,

1. The maximal ideal of $S[X]$ is (M, X).
2. (M, X) is not a principal ideal of $S[X]$.
3. $\dim S[X] \geq 2$.

We have finished seeing a semigroup version of [6].

§3. On Krull semigroups

We will study a semigroup version of [21]. The following (3.1)~(3.13) were proved in [16].
(3.1). The followings are equivalent:

(1) S is a Mori semigroup.
(2) For any integral ideal I, there exists a finitely generated ideal J such that $J \subseteq I$ and $I^{-1} = J^{-1}$.

(3.2). For any fractional ideal A of a Mori semigroup S, there exists a finitely generated fractional ideal I such that $I \subseteq A$ and $A^{-1} = I^{-1}$.

(3.3). Let $V \subseteq q(V)$ be a valuation semigroup which is Mori. Then V is discrete of rank 1.

Let A be an ideal or an extension semigroup of a grading monoid S. Then the followings are equivalent:

(1) For any ideal I, J of S, $(I \cap J) + A = (I + A) \cap (J + A)$.
(2) For any ideal I of S and for any $s \in S$, $(I : s)S + A = (I + A : s)A$.

If an ideal A of S satisfies the above conditions, then A is called a flat ideal of S. If an oversemigroup A of S satisfies the above conditions, then A is called a flat oversemigroup of S. If a flat A satisfies $A + M \subseteq A$, then A is called faithfully flat over S, where M is the maximal ideal of S.

We set $\{I^v \mid I \in F(S)\} = D(S)$ and $\frac{D(S)}{\{(a) \mid a \in q(S)\}} = C(S)$.

(3.4). Let S be a Mori semigroup and T an extension semigroup which is flat over S. Then there exist natural mappings $\phi : F(S) \to F(T)$, $j : D(S) \to D(T)$ and $\overline{j} : C(S) \to C(T)$.

If T is faithfully flat over S, then ϕ and j are injective.
If T is an oversemigroup of S, then ϕ, j and \overline{j} are surjective.

(3.5). Let A be a v-ideal of a Mori semigroup S. Then A is the intersection of a finite number of principal fractional ideals of S.

(3.6). Let S be a Mori semigroup and T an extension semigroup which is flat over S. If A is a v-ideal of S, then $A + T$ is a v-ideal of T.

(3.7). Let S be a Mori semigroup and T an oversemigroup which is flat over S. Then T is a Mori semigroup.

(3.8). Let S be a Krull semigroup and T an oversemigroup which is flat over S. Then T is a Krull semigroup.

If a fractional ideal A of S satisfies $A^v = A$ and $A + A^{-1} = A$, then A is called strongly divisorial.

We denote the complete integral closure of S by S^*.
An element A of $F(S)$ is called an idempotent if $A + A = A$.

(3.9). The followings are equivalent:

(a) $F(S)$ contains a maximum idempotent E under the inclusion.
(b) $F(S)$ contains a completely integrally closed oversemigroup E of S.
(c) $S^* \in F(S)$.
(d) There exists a minimum member \(I \) among strongly divisorial fractional ideals of \(S \) under the inclusion.

(3.10). \(S \) is completely integrally closed if and only if \(S \) is a minimum member under the inclusion among the strongly divisorial fractional ideals of \(S \).

The intersection of all prime ideals of a grading monoid \(S \) is called the pseudo-radical of \(S \). Let \(T \) be an oversemigroup of \(S \). Then, if the pseudo-radical of \(S \) is nonempty, then that of \(T \) is also nonempty.

(3.11). Let the pseudo-radical of \(S \) be nonempty. Then

1. If \(V \) is a valuation oversemigroup of \(S \), then \(V^* \subseteq F(V) \).
2. If \(\mathcal{S} \) is the integral closure of \(S \), then \((\mathcal{S})^* \subseteq F(\mathcal{S}) \).

For \(n \in \mathbb{N} \) and a subset \(I \) of \(S \), set \(nI = I + \cdots + I = \{a_1 + \cdots + a_n \mid a_i \in I\} \).

(3.12). Let \(S \) be a Mori semigroup, \(M \) a maximal ideal of \(S \) and \(\dim S = 1 \). Let \(x \in S \). Then,

1. There exists an \(n \in \mathbb{N} \) such that \(nM \subseteq (x) \).
2. \(M^{-1} \nsubseteq S \).

(3.13). Let \(S \) be a Mori semigroup, \(M \) a maximal ideal of \(S \) and \(\dim S > 1 \). Then either \(M^{-1} = S \) or \(M \) is strongly divisorial.

Let \(L(S) \) be the set of strongly divisorial fractional ideals of \(S \).

(3.14). Let \(S \) be a Mori semigroup and \(T \) an extension semigroup of \(S \) which is flat over \(S \). Then \(j(L(S)) \subseteq L(T) \). If \(T \) is an oversemigroup, then \(j(L(S)) = L(T) \).

Proof. Let \(A \in L(S) \). Then \(A + T \in D(T) \) by (3.6), and \(A^{-1} + T = (A + T)^{-1} \) by (3.4). Therefore \(A + T \in L(T) \).

(3.15). Let \(S \) be a Mori semigroup and \(P \) a prime ideal of \(S \). If \(\text{ht}(P) = 1 \), then \(P \) is divisorial. If \(\text{ht}(P) \geq 2 \), then \(P \) is either strongly divisorial or \(P^{-1} = S \).

Proof. For every prime ideal \(P \) of \(S \), \(S_P \) is a Mori semigroup and \(S_P \) is a faithfully flat oversemigroup of \(S \). If \(\text{ht}(P) = 1 \), then \(S_P \) is 1-dimensional. By (3.12), \((P + S_P)^{-1} \nsubseteq S_P \). Hence \(P + S_P \) is a divisorial ideal of \(S_P \). It follows that \(P \) is a divisorial ideal of \(S \). Assume that \(\text{ht}(P) \geq 2 \) and \(P^{-1} \nsubseteq S \). Then \(\dim(S_P) \geq 2 \). Since \(j : D(S) \to D(S_P) \) is injective, \(P^{-1} + S_P \nsubseteq S_P \). By (3.13), \(P + S_P \) is a strongly divisorial ideal of \(S_P \). By (3.14), \(P \) is a strongly divisorial ideal of \(S \).

(3.16) ([5]). If \(S \) is a Mori semigroup which is completely integrally closed, then \(S \) is a Krull semigroup.

We denote \(q(S) \) by \(G \). And for every subset \(I \) of \(G \), we denote \((S : I)_G \) by \(S : I \).

Next let \(S \) be a 1-dimensional integrally closed Mori semigroup. We will study if \(S \) becomes a discrete valuation semigroup of rank 1. If \(S = S^* \), then \(S \) is a discrete valuation semigroup of rank 1. Suppose that \(S \nsubseteq S^* \). Let \(M \) be
the maximal ideal of S, and let $\{V_\lambda|\lambda\}$ be the set of valuation oversemigroups of S with $V_\lambda \subseteq F$ for every λ. The proof of (3.11)(1) shows that $M + V_\lambda^* \subseteq V_\lambda$ for each λ. Hence $M + \cap_\lambda V_\lambda^* \subseteq S$. Let $x \in \cap_\lambda V_\lambda^*$ and let $p \in M$. Then $p + nx \in p + \cap_\lambda V_\lambda^* \subseteq S$ for each $n \in \mathbb{N}$. Hence $x \in S^*$. Therefore $\cap_\lambda V_\lambda^* = S^*$ and $M \subset S : S^* \subset S$. It follows that $M = S : S^*$. If $M + M^{-1} = S$, then M is a finitely generated ideal of S. It follows that S is a Noetherian semigroup, and hence $S^* = S = S$; a contradiction. Therefore $M + M^{-1} = M$. It follows that $S^* \subset M^{-1} = M : M = (S : S^*) : (S : S^*)$.

For every ideal I of S, it is easy to see that $I : I$ is an idempotent element of $F(S)$. Therefore M^{-1} is an idempotent. By the proof of (3.9), S^* is the maximum idempotent element of $F(S)$. Hence $M^{-1} = S^*$. Now let $J \in D(S^*)$. Then $J \in F(S)$, and we have

$$J = S^* : (S^* : J) = M^{-1} : (M^{-1} : J) = M^{-1} : (M + J)^{-1}$$

$$= (M + (M + J)^{-1})^{-1}.$$ Hence $J \in D(S)$. Namely $D(S^*) \subset D(S)$. Therefore S^* is a Mori semigroup. Next S^* is a completely integrally closed semigroup. Hence S^* is a Krull semigroup, and $S^* = W_1 \cap \cdots \cap W_n$ for discrete valuation semigroups W_i of rank 1.

(3.17) PROBLEM. Assume that S is a 1-dimensional integrally closed Mori semigroup. Is S a discrete valuation semigroup of rank 1?

(3.18). Let S be a Krull semigroup and T an oversemigroup which is flat over S. Then the mapping $j : C(S) \rightarrow C(T)$ is bijective if and only if every divisorial prime ideal P of S such that $P + T = T$ is principal.

(3.19). Let S be a Krull semigroup and T an oversemigroup which is flat over S. If S is a UFS, then T is a UFS. If every divisorial prime ideal P of S such that $P + T = T$ is principal and if T is a UFS, then S is a UFS.

S is called quasi-coherent if $I, J \in f(S)$ implies $I : J \in f(S)$. If S is coherent, then S is quasi-coherent.

(3.20). Assume that S is a quasi-coherent Mori semigroup. Then $\bar{S} = S^*$.

(3.21). Assume that S is a quasi-coherent integrally closed Mori semigroup. Then S is a Krull semigroup.

(3.22). Let $T = S[X]$ be the polynomial semigroup of an indeterminate X over S. Then there exist natural mappings $j : D(S) \rightarrow D(T)$ and $\bar{j} : C(S) \rightarrow C(T)$. j is injective.

Let I be an ideal of S. For every $n \in \mathbb{N}$, put $B_n = (nI)^{-1}$. Then $S(I) = \cup_n B_n$ is an oversemigroup of S. $S(I)$ is called the ideal transform of I with respect to S.

(3.23). Let S be a Krull semigroup, and I an ideal of S. Then $S(I)$ is a Krull semigroup.

(3.24). Let A be an ideal of S and $B = A^v$.

(1) If $B + S(B) = S(B)$, then $S(A)$ is over S and $S(A) = \cap S_P$ (P is a prime ideal with $P \not\supset B$).
(2) If $S(A)$ is flat over S and if $A^{-1} \in f(S)$, then $B + S(B) = S(B)$.

(3.25). If A is invertible, then $S(A)$ is flat over S.

(3.26). Let S be a Mori semigroup, A an ideal of S and $B = A^v$. Then $S(A)$ is flat over S if and only if $B + S(B) = S(B)$.

Proof. We may assume that $A = (f_1, \ldots, f_n)$ is finitely generated. We have $S(A) = \cap_i S_{f_i}$. Set $S(A) = T$. Then $T_{f_i} = S_{f_i}$ for every i. Let $T(A + T)$ be the ideal transform of $A + T$ with respect to T. Then

$$T(A + T) = \cap_i T_{f_i} = \cap_i S_{f_i} = T.$$

Therefore $T : (A + T) = T$. We confer (5.6).

$$B + T = j(B) = j(A^v) = (A + T)^v = T.$$

Hence $B + S(B) = S(B)$.

(3.27). If S is a 1-dimensional Mori semigroup. Then, for each ideal A of S, $S(A) = G$.

§4. On reflexive semigroups

We will study a semigroup version of [22]. Let S be a Mori semigroup. If every ideal generated by two elements is divisorial, then S is called an M-semigroup.

(4.1)([23] AND [24]). Let $S \subset G$ be a Mori semigroup and M the maximal ideal of S. Then the following conditions are equivalent:

1) $\dim S = 1$ and M^{-1} is 2-generated.

2) S is reflexive.

3) Each 2-generated ideal of S is a v-ideal.

(4.2) (A PART OF [17, PROPOSITION 18]). Let S be integrally closed. Then the followings are equivalent:

1) S is a valuation semigroup.

2) Each 2-generated ideal of S is divisorial.

The dimension of every M-semigroup is ≤ 1 ([24, Theorem 1]).

(4.3). Let S be a Mori semigroup of dimension 1 with maximal ideal M. If M^{-1} is 2-generated, then S is Noetherian and reflexive.

Because (4.1) implies that S is reflexive. If $I_1 \subset I_2 \subset I_3 \subset \cdots$ is an ascending chain of ideals of S, since each I_j is divisorial, there exists n such that $I_n = I_{n+1} = \cdots$.
Let S be a Mori semigroup of dimension 1 with maximal ideal M. Then M is divisorial.

The proof follows by (3.12)(2).

Let Σ be a family $\neq \emptyset$ of ideals of S which is additively closed. Then the subset $S_\Sigma = \{x \in G \mid x + I \subseteq S \text{ for some } I \in \Sigma\}$ of G is an oversemigroup of S. S_Σ is called the generalized quotient semigroup of S with respect to Σ.

(4.5). (1) Let I be an ideal of S. Put $\Sigma = \{I, 2I, 3I, \cdots\}$. Then $S_\Sigma = \bigcup_1^\infty (nI)^{-1}$ is the ideal transform $S(I)$ of I.

(2) Let Π be a family $\neq \emptyset$ of prime ideals of S. Let Σ be the set of ideals I of S such that $I \notin P$ for each $P \in \Pi$. Then $S_\Sigma = \cap \{S_P \mid P \in \Pi\}$.

(3) Let T be an oversemigroup of S which is flat over S. Then T is a generalized quotient semigroup.

For a fractional ideal A of S, put $A_\Sigma = \{x \in G \mid x + I \subseteq A \text{ for some } I \in \Sigma\}$. Then A_Σ is a fractional ideal of S_Σ, and $A + S_\Sigma \subseteq A_\Sigma$.

(4.6). Let A, B, A_1, \cdots, A_m be ideals of S. Then,

1. $(\cap_i A_i) + B_\Sigma \subseteq \cap_i (A_i + B_\Sigma) \subseteq \cap_i (A_i + B)_\Sigma$.
2. $A_\Sigma + B_\Sigma \subseteq (A + B)_\Sigma$.
3. $(A : B)_\Sigma \subseteq A_\Sigma : B_\Sigma$.
4. If B is finitely generated, then $A_\Sigma : B_\Sigma = (A : B)_\Sigma = A_\Sigma : (B + S_\Sigma)$.

(4.7). Let S be a Mori semigroup, and let T be the generalized quotient semigroup of S with respect to Σ. Then there exists natural mapping j of $D(S)$ onto $D(T)$. Also there exists natural mapping \tilde{j} of $C(S)$ onto $C(T)$. Let ν (resp. ν') be the ν-operation on S (resp. ν'). Then, for each $A \in F(S)$, we have $j(A^\nu) = (A_\Sigma)^{\nu'} = (A + T)^{\nu'} = (A^\nu)_\Sigma$.

(4.8). Let T be the generalized quotient semigroup of S with respect to Σ.

1. If S is a Mori semigroup, then T is a Mori semigroup.
2. If S is a Krull semigroup, then T is a Krul semigroup.
3. If S is a UFS, then T is a UFS.

For the proof, if S is a Krull semigroup, then $D(S)$ is a group. Since $j(D(S)) = D(T)$, $D(T)$ is a group, and T is completely integrally closed.

(4.9). Let T be an oversemigroup of S, which is flat over S. If S is Noetherian reflexive, then T is Noetherian reflexive.

Proof. By (3.7), T is a Mori semigroup. Let ν (resp. ν') be the ν-operation on S (resp. T). Let A' be an ideal of T. Put $A' \cap S = A$. The proof of (4.7) shows that $(A + T)^{\nu'} = (A')^{\nu'}$. Since $A^\nu = A$, $(A + T)^{\nu'} = A + T$ by (3.6). Hence $(A')^{\nu'} = A + T \subseteq A'$. Therefore T is reflexive.

(4.10). Let S be a reflexive semigroup with maximal ideal M. If M is principal, then S is a valuation semigroup.

Proof. Set $M = (a)$. Assume that $\tilde{S} \nsubseteq S$. Take $x \in \tilde{S} - S$. Then $S : S[x] \subseteq M$. Since $S[x] \in F(S)$, we have $S[x] \supseteq (-a)$. Hence $M + S[x] = S[x]$.
Since x is integral over S, we have $S[x] = \bigcup_{i=1}^{n} (f_i + S)$ for some $f_i \in S[x]$. We may assume that $f_1 = m_1 + f_2, f_2 = m_2 + f_3, f_3 = m_3 + f_4, \cdots$ for some $m_i \in M$. Thus we have $f_j = m_j + f_k$ for some $j > k$. We may assume $k = 1$. Adding these j equations, we have $0 = m_1 + \cdots + m_j$; a contradiction. Therefore S is integrally closed. By (4.2), S is a valuation semigroup.

Let S be a reflexive semigroup with maximal ideal M. If M is invertible, then M is principal. By (4.10), S is a valuation semigroup.

(4.11). Let S be a reflexive semigroup with maximal ideal M. Assume that $M + M^{-1} = M$. Then,

(1) $T = M^{-1}$ is an oversemigroup of S with $T \supsetneq S$.
(2) There exist no oversemigroups T' such that $S \subsetneq T' \subsetneq T$.
(3) $T \subset \bar{S} \subsetneq G$.
(4) For each $\alpha \in T - S$, $T = S \cup (\alpha + S)$ and $2\alpha \in S$.

If $\bar{S} = G$, then $S = G$; a contradiction. If $2\alpha \in \alpha + S$, then $\alpha \in S$; a contradiction. Hence $2\alpha \in S$.

(4.12). In (4.11), let A' and B' be distinct ideals of T such that $A' \cap S = B' \cap S$. Then $A' \cap B' \subset S$.

Proof. Suppose that $A' \cap B' \not\subset S$. Choose $\alpha \in (A' \cap B') - S$. By (4.11)(2), $T = S[\alpha]$. We may assume that $A' \not\subset B'$. Let $x \in A' - B'$. Then $x = s + n\alpha$ for $s \in S$ and $n \in N$. Hence $x \in B'$; a contradiction.

(4.13). In (4.11), let M_1 be the maximal ideal of T. Then,

(1) $M_1 \cap S = M$.
(2) M is an ideal of T.
(3) There exist no ideals J of T such that $M_1 \supsetneq J \supsetneq M$.

Proof. By (4.11)(3), T is integral over S. Hence $M_1 \cap S = M$. $M_1 + (S : M_1) \subset M_1 + (S : M) = M_1$. Therefore $M_1 + (S : M_1) \subset M$. Note that $F(T) \subset F(S) = D(S)$. It follows that $S : M_1$ is an ideal of T. Since $M + T = M + M^{-1} = M$, M is an ideal of T.

(4.12) implies that there exist no ideals J of T such that $M_1 \supsetneq J \supsetneq M$.

(4.14). In (4.11), assume that $M_1 \supsetneq M$. Then,

(1) $S : M_1 = M_1$.
(2) $2M_1 \subset M$.
(3) If M_1 is not a principal ideal of B, then $M + M_1 = 2M_1$.
(4) If M_1 is a principal ideal of B, then $M = 2M_1$.

Proof. $M + M_1 \subset M + T = M$. Hence $M \subset S : M_1$. Therefore either $S : M_1 = M$ or $S : M_1 = M_1$. If $S : M_1 = M$, then $M_1 = M^{-1} = T$; a contradiction. Hence $S : M_1 = M_1$.

$2M_1 = M_1 + (S : M_1) \subset S$. Since $0 \not\in 2M_1$, we have $2M_1 \subset M$.

It follows that $(M_1 : M) + M_1 + M \subset S$. Hence $(M_1 : M) + M_1 \subset T$. Assume that M_1 is not a principal ideal of T. Then $(M_1 : M) + M_1 \subset M_1$. Hence $M_1 : M = M_1 : M_1$. Since $M_1 = S : M_1$, we have $S : (M_1 + M) = S : (M_1 + M_1)$. Therefore $M_1 + M = 2M_1$.

On some Properties between Rings and Semigroups

17
Assume that M_1 is a principal ideal of T. If $(M_1 : M) + M_1 \subset M_1$, we have $M = M_1$; a contradiction. Therefore $(M_1 : M) + M_1 = T$. We have $0 = \alpha + (-\alpha)$ for $\alpha \in M_1$ and $-\alpha \in M_1 : M$. Then $M \subset \alpha + M_1$ and $M_1 = \alpha + T$. It follows that $M \subset \alpha + M_1 = \alpha + \alpha + T = M_1 + M_1 \subset M$; hence $2M_1 = M$.

(4.15). In (4.14), if M_1 is a principal ideal of T, then T is a reflexive valuation semigroup, and $T = S$.

Proof. We have $M_1 = \alpha + T$ for some $\alpha \in M_1$.

Let J be an ideal of T. Then $M = 2M_1 = 2\alpha + T$ and $J + M = J + 2\alpha + T = 2\alpha + J$. We have

$$T : (T : J) = (S : M) : ((S : M) : J) = (S : (S : (J + M))) : M = (J + M) : M = (2\alpha + J) : (2\alpha + T) = J : T = J.$$

Therefore T is reflexive. By (4.10), T is a valuation semigroup.

(4.16). In (4.11), M is not a cancellation ideal of S.

Proof. If M is a cancellation ideal of S, then $M = (a)$ is principal ([16, (8.2)]). $M + M^{-1} = S$; a contradiction.

§5. On cancellation ideals

[2] posed the problem whether a cancellation ideal of a local domain is principal. The following (5.1)～(5.3) were proved in [16].

(5.1). Every cancellation ideal of a grading monoid S is principal.

[2] holds for S([25, Proposition 5]). For example,

(5.2). All ideals of S are cancellation ideals if and only if $S = G$ or S is a discrete valuation semigroup of rank 1.

(5.3). (1) Assume that S has a unique maximal ideal M and satisfies the ascending chain condition on principal ideals. If M is a cancellation ideal, then S is a discrete valuation semigroup of rank 1.

(2) Assume that a valuation semigroup S has a unique maximal ideal M which is principal. Then S need not be a discrete valuation semigroup of rank 1.

Every faithfully flat ideal of S is principal (cf. [14, Remark 3, (1)]).

(5.4). Let A be an ideal of S or an oversemigroup of S. If A is faithfully flat over S, then A is a principal ideal of S. If A is an oversemigroup, then $A = S$.

Proof. Choose $A \ni a \not\in A + M$. Let $a' \in A$. Then $a + a' \in ((a) + A) \cap ((a) + A) = (a \cap (a')) + A$. Hence $a + a' = c + a''$ for some $c \in (a) \cap (a')$. $c = a + s = a' + s'$ for $s, s' \in S$. $a = s' + a''$. By the choice of a, s' is a unit of S. Then $a' \in (a)$. Therefore $A = (a)$. If A is an oversemigroup, then $a + a \in (a)$ implies $a \in S$.

As a ring version of (5.4),
(5.5). Let D be a local domain with maximal ideal M. Let E be an overring of D. If E is faithfully flat over D, then $E = D$.

This seems to have been known.

Let R be a commutative ring with zero-divisors, and $q(R)$ be the total quotient ring of R. A non-zero-divisor of R is called a regular element of R. If an ideal I of R contains at least one regular element, then I is called a regular ideal of R. If every regular ideal of R is generated by regular elements, then R is called a Marot ring. Let P be a prime ideal of R. Then the overring $\{x \in q(R) \mid sx \in R$ for some $s \in R - P\}$ of R is denoted by $R_{[P]}$. In the proof of the following (5.6), we confer [8, Section 4].

(5.6). Let A be a Marot ring. Let T be an overring of A which is faithfully flat over A. Then $T = A$.

Proof. Let M be a regular maximal ideal of A. Then $T \supseteq MT$. Let N be a maximal ideal of T with $N \supseteq MT$. Then $T_{[N]} = A_{[M]}$. Since $TA_{[M]}$ is flat over $A_{[M]}$, either $TA_{[M]} = MTA_{[M]}$ or $A_{[M]} \supset T$. Suppose that $TA_{[M]} = MTA_{[M]}$. Then $A_{[M]} = MA_{[M]}$; a contradiction. Therefore $A_{[M]} \supset T$. Hence $T = A$.

(5.6) seems to have been known.

§6. On units of semigroup rings

The following (6.1) ~ (6.5) were proved in [10].

(6.1). Assume that R is indecomposable. Let $\sum_{1}^{n} a_i X^{\alpha_i}$ be the canonical form of a nonzero element f of $R[X; S]$.

1. $f \in V(R[X; S])$ if and only if $\sum a_i = 1$, $a_k \equiv 1(N)$ and $\alpha_i \equiv 0(N)$ for all $i \neq k$.

2. $f \in W(R[X; S])$ if and only if $\sum a_i = 1$, the coefficient of degree 0 is 1 modulo N, and the other coefficients are 0 modulo N.

(6.2). (1) Assume that R is reduced and indecomposable. Then we have $V(R[X; S]) = X^H$ and $W(R[X; S]) = 1$.

(2) $W(R[X; S]) = 1$ if and only if R is reduced and indecomposable.

(6.3). Assume that R is reduced and indecomposable. Then the following is equivalent:

1. $U(R[X; S])$ is free modulo torsion;

2. $U(R)$ is free modulo torsion and H is free.

(6.4). Assume that R is indecomposable and not reduced. Then $W(R[X; S])$ is not a finitely generated free abelian group.

(6.5). Assume that R is indecomposable. Then the following is equivalent:

1. $U(R[X; S])$ is a finitely generated free abelian group modulo torsion.
(2) \(U(R)\) is a finitely generated free abelian group modulo torsion, \(H\) is a finitely generated free abelian group, and \(N = M\).

(6.6). Let \(e_1, \ldots, e_n\) be nonzero idempotents of \(R\) such that \(e_1 + \cdots + e_n = 1\) and \(e_i e_j = 0\) for \(i \neq j\), where \(n \geq 2\). Set
\[H \oplus \cdots \oplus H \equiv \{(\alpha_1, \ldots, \alpha_n) \mid \alpha_i \in H\} \supset D = \{(\alpha, \ldots, \alpha) \mid \alpha \in H\}.
Then,
(1) \(U(R[X;S]) \equiv U(Re_1[X;S]) \oplus \cdots \oplus U(Re_n[X;S])\).
(2) \(V(R[X;S]) \equiv V(Re_1[X;S]) \oplus \cdots \oplus V(Re_n[X;S])\).
(3) \(U(R[X;S]) \equiv \frac{H \oplus \cdots \oplus H}{D} \oplus \cdots \oplus \frac{U(Re_1[X;S])}{D}\).
(4) \(U(R[X;S])\) is free modulo torsion if and only if, for each \(i\), \(U(Re_i[X;S])\) is free modulo torsion.
(5) \(U(R[X;S])\) is a finitely generated free abelian group modulo torsion if and only if, for each \(i\), \(U(Re_i[X;S])\) is a finitely generated free abelian group modulo torsion.

(6) \(W(R[X;S]) \equiv \frac{H \oplus \cdots \oplus H}{D} \oplus W(Re_1[X;S]) \oplus \cdots \oplus W(Re_n[X;S])\).

(7) \(H\) has a free complement in \(V(R[X;S])\) if and only if \(\frac{H \oplus \cdots \oplus H}{D}\) is free and, for each \(i\), \(H\) has a free complement in \(V(Re_i[X;S])\).
(8) \(H\) has a free complement in \(V(R[X;S])\) if and only if \(V(R[X;S])\) is free.

Proof (6) For each \(i\), there is a natural isomorphism of \(V(Re_i[X;S])\) on to \(X^H e_i \otimes W(Re_i[X;S])\). Hence there exists a natural isomorphism \(\sigma\) of \(V(R[X;S])\) onto \(X^H e_1 \otimes \cdots \otimes X^H e_n \otimes W(Re_1[X;S]) \oplus \cdots \otimes W(Re_n[X;S])\). Then the image \(\sigma(X^H)\) is \(\{(X^{\alpha_1}, \ldots, X^{\alpha_n}, e_1, \ldots, e_n) \mid \alpha \in H\}\). Hence
\[V(R[X;S]) \equiv \frac{X^H e_1 \otimes \cdots \otimes X^H e_n}{D} \oplus W(Re_1[X;S]) \oplus \cdots \oplus W(Re_n[X;S]).\]

(8) Put \(K_2 = \{(0, \alpha, 0, \cdots, 0) \mid \alpha \in H\}\), \(\cdots\), \(K_n = \{(0, 0, 0, \cdots, \alpha) \mid \alpha \in H\}\). Then \(H \oplus \cdots \oplus H = D \oplus K_2 \oplus \cdots \oplus K_n\). Hence \(\frac{H \oplus \cdots \oplus H}{D} \cong K_2 \oplus \cdots \oplus K_n\).
If \(H\) has a free complement in \(V(R[X;S])\), then \(K_2\) is free by (7). Hence \(H\) is free. Therefore \(V(R[X;S])\) is free.

The semigroup version posed in [12] of the Karpilovsky’s problem [11, Chapter 7, Problem 9] reduces to the following,

(6.7) PROBLEM. Assume that \(R\) is indecomposable. Find necessary and sufficient conditions for \(H\) to have a free complement in \(V(R[X;S])\).

§7. On \(r\)-GCD rings

D.D. Anderson posed fifteen problems at the problem session at the Midwest-Great Planes Commutative Algebra Workshop held at The University of Missouri-Columbia, June 21-22, 1991. The eighth problem of them is the following:
If a and b are regular elements of a ring R and a and b have an LCM, then they have a GCD. However, even in an integral domain, a and b may have a GCD but not an LCM. But in an integral domain, every pair of elements has a GCD if and only if every pair of elements has an LCM. Let R be a ring in which every pair of regular elements has a GCD; does every pair of regular elements have an LCM? What if we add ACC on regular principal ideals?

Let R be a commutative ring \mathfrak{R}. Let d and e be elements of R. If $e = dx$ for some element x of R, then d is called a divisor of e. In this case, e is called a multiple of d.

Let a and b be elements of R, and let d be a common divisor of a and b. If every common divisor d' of a and b is a divisor of d, then d is called a greatest common divisor (for short, GCD) of a and b. Let e be a common multiple of a and b. If every common multiple e' of a and b is a multiple of e, then e is called a least common multiple (for short, LCM) of a and b.

Non-zerodivisors of R is called regular elements of R. If every pair of regular elements of R has a GCD, then we will call R an r-GCD ring ("r" means "regular"). If every pair of regular elements of R has an LCM, then we will call R an r-LCM ring. If R satisfies ascending chain condition on regular principal ideals, then R is said to satisfy a.c.c.r.p.

The eighth problem of D.D. Anderson is

(7.1). Is an r-GCD ring an r-LCM ring? What if we add a.c.c.r.p?

(7.2). If a and b are regular elements of R and a and b have an LCM, then they have a GCD. However, even in an integral domain, a and b may have a GCD but not an LCM. But in an integral domain, every pair of elements has a GCD, if and only if every pair of elements has an LCM.

Let $D = k[X_2, X_3, X_4, \ldots]$ where k is a field and X an indeterminate. Then GCD(X_2, X_3) = 1, but LCM(X_2, X_3) does not exist.

(7.3). If R is an r-LCM ring, then R is an r-GCD ring.

Let $a, b \in R$. If there exists a unit u of R, such that $a = bu$, then a and b are called associated.

Let $a \in R$. Assume that a is not 0, a is not a unit, and if $a = bc$, then b or c is a unit of R. Then a is called an irreducible element of R.

If every regular element a of R is expressible as $a = p_1p_2 \cdots p_n$ for irreducible elements p_i uniquely up to associates and order, then R is called an r-UFR.

(7.4). R is an r-UFR if and only if R is an r-GCD ring and R satisfies a.c.c.r.p.

PROOF. The sufficiency: Then each regular element a of R is a product of irreducible elements. Suppose that $a = p_1 \cdots p_n = q_1 \cdots q_m$, where every p_i and q_j are irreducible elements. We will show by induction on n that $n = m$ and, under a suitable order, every p_i and q_i are associated. If q_1 and p_i are associated for some i, then the proof is over. Suppose the contrary. Then GCD(p_1, q_1) = 1. Then GCD($p_1q_2 \cdots q_m, q_1q_2 \cdots q_m$) = $q_2 \cdots q_m$. Since p_1 is a common divisor of
$p_1 q_2 \cdots q_m$ and a, we have $q_2 \cdots q_m = p_1 r$ for some $r \in R$. Then $p_2 \cdots p_n = q_1 r$.
By induction, q_1 is associated with some p_j; a contradiction.

(7.5). Let R be an r-UFR, a a regular element of R and x a nilpotent of R. Then $x = ar$ for some $r \in R$.

Proof Let $a = p_1 \cdots p_n$ be an irreducible decomposition of a. We have $x^m = 0$ for some m. Then $(p_1 + x)^m = p_1 x_1$ for some $x_1 \in R$. Hence $p_1 + x = p_1 x_2$ for some $x_2 \in R$. Hence $x = p_1 x_3$ for some $x_3 \in R$. We will rely on induction on n. We have $x = p_1 \cdots p_n r_1$ for some $r_1 \in R$. Then r_1 is a nilpotent of R. Hence $r_1 = p_n r_2$ for some $r_2 \in R$. Then $x = p_1 \cdots p_n r_2$.

(7.6) EXAMPLE. Let D be a Dedekind domain, \{${P_0, P_\lambda \mid \lambda}$\} the set of distinct maximal ideals of D, $M = \sum_{\lambda} D_{P_\lambda}$ a D-module of the restricted direct sum, $R = D \oplus M$ the semidirect product of D and the D-module M. Then R is an r-LCM ring.

Proof. Let $a \in D$ be a regular irreducible element of R. Then $aD = P_0^e$ with $e \geq 1$. Hence R has only one regular irreducible element a up to associates.

(7.7) EXAMPLE. Let $D = \mathbb{Z}[\sqrt{-5}]$ be the ring of algebraic integers of $\mathbb{Q}(\sqrt{-5})$, $P_1 = (2, 1 + \sqrt{-5})$, $P_2 = (3, 1 - \sqrt{-5})$; \{${P_\lambda \mid \lambda}$\} be the other maximal ideals of D; $M = \sum_{\lambda} D_{P_\lambda}$; $R = D \oplus M$. Then R is not an r-GCD ring.

Proof. $2D = P_2^2$, $(1 - \sqrt{-5})D = P_1 P_2$, $(2 + \sqrt{-5})D = P_2^2$, $1 - \sqrt{-5}$, $2 + \sqrt{-5}$ are regular irreducible elements which are not associated each other. $-2(2 + \sqrt{-5}) = (1 - \sqrt{-5})^2$.

(7.8) EXAMPLE. Let D be a Dedekind domain, \{${P, Q, P_\lambda \mid \lambda}$\} the distinct maximal ideals, $M = \sum \oplus_{\lambda} D_{P_\lambda}$, $R = D \oplus M$. If R is an r-UFR, then R is an r-LCM ring.

Proof. Let $x \in D$ be a regular irreducible element of R. If x is the only regular irreducible element of R (up to associates), R is an r-LCM ring. Let $y \in D$ be a regular irreducible element of R which is not associated with x. $x = P^{e_1} Q^{e_1}$, $y = P^{e_2} Q^{e_2}$. Then we have $P^{e_3} = x_3, Q^{e_3} = y_3$ for some $e_3, e_3 \geq 1$ and $x_3, y_3 \in D$. We may assume that x_3 and y_3 are irreducible elements of R. If x_3 and y_3 are only regular irreducible elements of R (up to associates), R is an r-LCM ring. Suppose that $a \in D$ is a regular irreducible element of R which is not associated with any of x_3 and y_3. $a = P^{e_4} Q^{e_4}$, where $e_4 < e_3, e_4 < e_3$. Then $xy = a P^{e_4 - e_4} Q^{e_3 - e_4}$. Hence R is not an r-UFR.

References

On some Properties between Rings and Semigroups