<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>The behaviour of generalized denominator ideals in anti-integral extensions</td>
</tr>
<tr>
<td>Author(s)</td>
<td>ODA, Susumu; YOSHIDA, Ken-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical Journal of Ibaraki University, 29: 1-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3057</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
The behaviour of generalized denominator ideals
in anti-integral extensions

SUSUMU ODA* and KEN-ICHI YOSHIDA**

Let R be a Noetherian domain and $R[X]$ a polynomial ring. Let α be an
element of an algebraic field extension L of the quotient field K of R and let
$\pi : R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α. Let $\varphi_{\alpha}(X)$
be the monic minimal polynomial of α over K with $\deg \varphi_{\alpha}(X) = d$ and write

$$\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$$

Then η_i $(1 \leq i \leq d)$ are uniquely determined by α. Let $I_{\eta_i} := R : R \eta_i$ and $I_{[\alpha]} := \bigcap_{i=1}^{d} I_{\eta_i}$, the latter of which is called a generalized denominator ideal of α. We say
that α is an anti-integral element if $\ker \pi = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. For $f(X) \in R[X]$, let $C(f(X))$ denote the ideal of R generated by the
coefficients of $f(X)$. For an ideal J of $R[X]$, let $C(J)$ denote the ideal
generated by the coefficients of the elements in J. If α is an anti-integral
element, then $C(\ker \pi) = C(I_{[\alpha]} \varphi_{\alpha}(X) R[X]) = I_{[\alpha]}(1, \eta_1, \ldots, \eta_d)$. Put $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \ldots, \eta_d)$. Let $\bar{J}_{[\alpha]} := I_{[\alpha]}(1, \eta_1, \ldots, \eta_{d-1})$. If $J_{[\alpha]} \not\subseteq p$ for all $p \in \text{Dp}_1(R) := \{ p \in \text{Spec}(R) \mid \text{depth } R_p = 1 \}$, then α is called a super-primitive
element. It is known that a super-primitive element is an anti-integral ele-
ment (cf. [OSY, (1.12)]). It is known that any algebraic element over a Krull
domain R is anti-integral over R (cf. [OSY, (1.13)]). When α is an element in K,
$\varphi_{\alpha}(X) = X - \alpha$. Then $I_{[\alpha]} = I_{\alpha} := R : R \alpha$, a denominator ideal of $\alpha \in K$. Put
$J_{\alpha} := J_{[\alpha]}$. So we have $J_{\alpha} = J_{[\alpha]} = I_{[\alpha]}(1, \alpha) = I_{\alpha}(1, \alpha) = I_{\alpha} + \alpha I_{\alpha} = I_{\alpha} + I_{\alpha-1}$.

Unless otherwise specified, we use the above notation, and our general
reference for unexplained technical terms are [M].

Let α be an anti-integral element of degree d over R. Consider the following
statements :

(i) $I_{[\alpha]} R[\alpha] = R[\alpha]$;
(ii) $R[\alpha]$ is flat over R ;
(iii) $R[\alpha]$ is unramified over R.

In [KY], we have shown that the statements above are all equivalent if $d = 1$, i.e., $\alpha \in K$ (cf. [KY, Theorem 12]). It seems natural to ask whether the above
equivalences are valid in the case $d > 1$. Our objective is to investigate the
implications among (i) — (iv).

We begin with the following known result.

Received May 1, 1996.
1991 Mathematics Subject Classification. 13B02.
* Matsusaka Commercial High School, Toyohara, Matsusaka, Mie 515-02, Japan.
** Department of Applied Math., Okayama University of Science, Ridai-cho, Okayama 700, Japan.
PROPOSITION 1. Let α be an anti-integral element of degree d over R. Then the implications $$(i) \Rightarrow (ii), (iii) \Rightarrow (ii) \text{ and } (iii) \Rightarrow (i)$$ hold.

PROOF. The implication $(i) \Rightarrow (ii)$ is seen in [S]. The implications $(iii) \Rightarrow (ii)$ and $(iii) \Rightarrow (i)$ are seen in [KY].

EXAMPLE 2. We construct an example which shows that the implication $(ii) \Rightarrow (i)$ is not always valid. Let k be a field and let $R := k[x,y]$ be a polynomial ring. Let α be an algebraic element whose minimal polynomial is $\varphi_\alpha(X) = X^3 + (1/x)X^2 + (1/y)X + (1/xy) \in k(x,y)[X]$. Then α is anti-integral over R of degree 3. We have $I_{[\alpha]} = xyR$ and hence $I_{[\alpha]}R[\alpha] = xyR[\alpha] \neq R[\alpha]$. It is easy to see that $J_{[\alpha]} = R$. Hence $R[\alpha]$ is flat over R by [OSY, (3.4)].

EXAMPLE 3. ([SOY, §3 Example]). We know that the implication $(ii) \Rightarrow (iii)$ is not always valid as follows. Let $\beta \in L$ satisfy $\beta^d = a \in R$ and $a \notin R^d$ with $[K(\beta) : K] = d$ for $d > 1$. Then $\varphi_\beta(X) = X^d - a$ and $\varphi'_\beta(\beta) = d\beta^{d-1} \notin R[\beta]^d$. Thus $R[\beta]$ is integral and hence flat over R by [OSY, (2.5)] but not unramified over R (cf. [SOY]).

REMARK 4. If $I_{[\alpha]} = R$, then $R[\alpha]$ is integral over R by [OSY]. In this case, $I_{[\alpha]}R[\alpha] = R[\alpha]$. But in general, we cannot say that $R[\alpha]$ is unramified over R. In fact, when $I_{[\alpha]}R[\alpha] = R[\alpha]$, $R[\alpha]$ is unramified over R if and only if $\varphi'_\alpha(\alpha)R[\alpha] = R[\alpha]$ (cf. [KY]). But $\varphi'_\alpha(\alpha)$ is not always a unit in $R[\alpha]$ even if $R[\alpha]$ is integral over R. So the implication $(i) \Rightarrow (iii)$ does not always hold.

Now we shall give an equivalent condition under which $I_{[\alpha]}R[\alpha] = R[\alpha]$ holds. Let α be an element algebraic over R and put $A = R[\alpha]$. For an ideal N of R, put $V(N) := \{ p \in \text{Spec}(R) \mid N \subseteq p \}$. Let $\Delta_{A/R} := \{ p \in \text{Spec}(R) \mid pA = A \}$ and let $\Gamma_{J_{[\alpha]}} := \{ p \in \text{Spec}(R) \mid p + J_{[\alpha]} = R \}$ (See [KY]).

PROPOSITION 5. Assume that α is an anti-integral element over R of degree d. Then the following statements are equivalent:

1. $I_{[\alpha]}R[\alpha] = R[\alpha]$;
2. $\sqrt{J_{[\alpha]}} = \sqrt{I_{[\alpha]}}$ and $J_{[\alpha]} = R$.

If (2) holds, then $\text{Im}[\text{Spec}(R[\alpha]) \rightarrow \text{Spec}(R)] = \text{Spec}(R) \setminus V(I_{[\alpha]})$, a open subset in $\text{Spec}(R)$.

PROOF. Let $A := R[\alpha]$.

(1) \Rightarrow (2): Since A is flat over R by Proposition 1, we have $J_{[\alpha]} = R$ by [OSY, (2.6)]. Thus $\Delta_{A/R} = V(J_{[\alpha]}) \cap \Gamma_{J_{[\alpha]}} = V(J_{[\alpha]})$ (cf. [KY, Theorem 7]) and hence $I_{[\alpha]} \subseteq J_{[\alpha]}$. So we have $\Delta_{A/R} \subseteq V(I_{[\alpha]})$. Since $I_{[\alpha]}A = A$ by assumption, we have $V(I_{[\alpha]}) \subseteq \Delta_{A/R}$. Hence $V(I_{[\alpha]}) = \Delta_{A/R} = V(J_{[\alpha]})$, which means that $\sqrt{J_{[\alpha]}} = \sqrt{I_{[\alpha]}}$.

(2) \Rightarrow (1): From the assumption, it follows that $\Delta_{A/R} = V(J_{[\alpha]}) \cap \Gamma_{J_{[\alpha]}} = V(J_{[\alpha]}) = V(I_{[\alpha]})$. Hence $I_{[\alpha]}A = A$.

Next assume (2) holds. We know $\text{Im}[\text{Spec}(R[\alpha]) \rightarrow \text{Spec}(R)] = (\text{Spec}(R) \setminus V(J_{[\alpha]})) \cup V(J_{[\alpha]})$ by [KY, Theorem 7]. So $(\text{Spec}(R) \setminus V(J_{[\alpha]})) \cup V(J_{[\alpha]}) = \text{Spec}(R) \setminus V(I_{[\alpha]})$ by (2). Q.E.D.
REMARK 6. Assume that \(\alpha \) is anti-integral over \(R \) of degree \(d \). If \(I_{[\alpha]} R[\alpha] = R[\alpha] \), then \(I_{[\alpha]} \) is an invertible ideal of \(R \) because \(R = J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \cdots, \eta_d) \) by Proposition 5.

PROPOSITION 7. Assume that \(\alpha \) is anti-integral over \(R \) of degree \(d \). Consider the following statements:

1. \(I_{[\alpha]} R[\alpha] = R[\alpha] \);
2. \(I_{[\alpha]} + I_{[\alpha^{-1}]} = R \);
3. \(I_{[\alpha]} = I_{\eta_d} \) and \(J_{\eta_d} = R \).

Then the implications (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) hold.

PROOF. (1) \(\Rightarrow \) (2): Suppose that \(I_{[\alpha]} + I_{[\alpha^{-1}]} \nsubseteq R \). Take \(p \in \text{Spec}(R) \) such that \(I_{[\alpha]} + I_{[\alpha^{-1}]} \nsubseteq p \). Then \(I_{[\alpha]} R_p = a R_p \) for some \(a \in I_{[\alpha]} \) by Remark 6. Put \(a_0 = a, a \eta_i = a_i \) (\(1 \leq i \leq d \)). Then we have \(a_0 \alpha^d + a_1 \alpha^{d-1} + \cdots + a_d = 0 \). Since \(I_{[\alpha]}(1, \eta_1, \cdots, \eta_d) = R \) and \(\sqrt{J[a]} = \sqrt{I[a]} \), \(a_d \) is an invertible element in \(R_p \). Moreover we have \(a_0, \cdots, a_d-1 \in \sqrt{J[a]} = \sqrt{I[a]} \). So we can take a large integer \(n \) such that \((a_d)^n = (-a_0 \alpha^d + \cdots + a_d-1 \alpha)^n = a_b N \alpha^N + \cdots + b_n \alpha^n \) for some \(b_i \in R_p \). Thus we have an algebraic relation:

\[
c N \alpha N + \cdots + c_1 \alpha + \frac{1}{a} = 0
\]

for some \(c_i \in R_p \). This means that \(\alpha \) is a comonic over \(R_p \), i.e., \(\alpha^{-1} \) is integral over \(R_p \). Since \(\alpha \) is anti-integral over \(R \), \(\alpha^{-1} \) is also anti-integral over \(R \) by [KY2, Theorem 6]. Hence \(\alpha^{-1} \) is integral and anti-integral over \(R_p \). So we have \(I_{[\alpha^{-1}]} R_p = R_p \), which contradicts the assumption \(I_{[\alpha^{-1}]} \subseteq p \).

(2) \(\Leftrightarrow \) (3): Since \(I[\alpha^{-1}] = \eta_d I_{[\alpha]} \), (2) implies that \(R = I_{[\alpha]} + I_{[\alpha^{-1}]} = I_{[\alpha]}(1, \eta_d) \). Hence \(I_{[\alpha]} = I_{\eta_d} \) and \(J_{\eta_d} = I_{\eta_d}(1, \eta_d) = R \). The converse implication is easy to see. Q.E.D.

EXAMPLE 8. Let \(R \) be a polynomial ring \(k[a, b] \) over a field \(k \) and let \(\alpha \) be a root of the equation:

\[
\frac{a}{a-1} X^2 + \frac{b}{a(a-1)} X + \frac{a-1}{a} = 0.
\]

Then the minimal polynomial of \(\alpha \) is given by

\[
\varphi_{\alpha}(X) = X^2 + \frac{b}{a^2} X + \left(\frac{a-1}{a} \right)^2.
\]

In this case, \(I_{[\alpha]} = a^2 R \); \(\varphi_{\alpha^{-1}}(X) = X^2 + (b/(a-1)^2)X + (a/(a-1))^2 \) and \(I_{[\alpha^{-1}]} = (a-1)^2 R \). Thus \(I_{[\alpha]} + I_{[\alpha^{-1}]} = R \), \(J_{[\alpha]} = R \) and \(J_{[\alpha]} = a^2(1, b/a^2) R = (a^2, b) R \). Hence \(\text{grade}(J_{[\alpha]}) > 1 \). Therefore \(\sqrt{J_{[\alpha]}} \neq \sqrt{I_{[\alpha]}}, \) which means that \(I_{[\alpha]} R[\alpha] \neq R[\alpha] \). The implication (2) \(\Rightarrow \) (1) is not always valid in Proposition 7.

Next under the condition \(I_{[\alpha]} R[\alpha] = R[\alpha] \), we shall give rise to a condition which is equivalent to the statement that \(R[\alpha] \) is unramified over \(R \).
THEOREM 9. Assume that α is anti-integral over R of degree d and that $I[\alpha] R[\alpha] = R[\alpha]$. Then $R[\alpha]\eta_1, \ldots, \eta_d$ is unramified over $R[\eta_1, \ldots, \eta_d]$ if and only if $R[\alpha]$ is unramified over R.

PROOF. (\Rightarrow): Take $P \in \text{Spec}(R[\alpha])$ and put $p = P \cap R$. Since $I[\alpha] R[\alpha] = R[\alpha]$, we have $I[\alpha] \not\subseteq p$. Thus $\eta_1, \ldots, \eta_d \in R_p$. Since $R[\alpha]\eta_1, \ldots, \eta_d$ is unramified over $R[\eta_1, \ldots, \eta_d]$, it follows that $R_p[\alpha] = R_p[\alpha][\eta_1, \ldots, \eta_d]$ is unramified over $R[\eta_1, \ldots, \eta_d]$. Hence $I[\alpha] R_p[\alpha][\eta_1, \ldots, \eta_d] = I[\alpha] R_p[\alpha][\eta_1, \ldots, \eta_d]$ by [KY, Theorem 8]. Note here that α is anti-integral over R_p of degree d. Hence $\varphi' \alpha(\alpha)$ is a unit in $R_p[\alpha][\eta_1, \ldots, \eta_d] = R_p[\alpha]$ because $I[\alpha] \not\subseteq p$. Therefore $R_p[\alpha]$ is unramified over R_p. So we conclude that $R[\alpha]$ is unramified over R.

(\Leftarrow): Since $I[\alpha] R[\alpha] = R[\alpha]$, we have only to show that $\varphi' \alpha(\alpha)$ is a unit in $R[\alpha]\eta_1, \ldots, \eta_d$ by [KY, Theorem 8]. Take $P' \in \text{Spec}(R[\alpha]\eta_1, \ldots, \eta_d)$, and put $P := P' \cap R$. Since $I[\alpha] R[\alpha] = R[\alpha]$, we have $p \not\subseteq I[\alpha]$. Hence $\eta_1, \ldots, \eta_d \in R_p$ and $R_p[\alpha]\eta_1, \ldots, \eta_d = R_p[\alpha]$. Since $R[\alpha]$ is unramified over R by the assumption, it follows that $\varphi' \alpha(\alpha)^{-1} \in R_p[\alpha]$, which means that $\varphi' \alpha(\alpha)$ is a unit in $R_p[\alpha]$. Therefore we conclude that $\varphi' \alpha(\alpha)$ is a unit in $R[\alpha]\eta_1, \ldots, \eta_d$.

Q. E. D.

REMARK 10. Under the same assumption as above, $R[\alpha]\eta_1, \ldots, \eta_d$ is unramified over $R[\eta_1, \ldots, \eta_d]$ if and only if $\varphi' \alpha(\alpha)$ is a unit in $R[\alpha]\eta_1, \ldots, \eta_d$. (See Remark 4.)

THEOREM 11. Assume that α is anti-integral over R of degree d. Consider the following statements:

(1) $I[\alpha] R[\alpha] = R[\alpha]$;
(2) $I[\alpha] R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d]$;
(3) $R[\eta_1, \ldots, \eta_d]$ is flat over R.

Then the implications (1) \Rightarrow (2) \Rightarrow (3) hold.

PROOF. (1) \Rightarrow (2): The assumption $I[\alpha] R[\alpha] = R[\alpha]$ yields $I[\alpha] R[\alpha]\eta_1, \ldots, \eta_d = R[\alpha]\eta_1, \ldots, \eta_d$. Since α is integral over $R[\eta_1, \ldots, \eta_d]$ with a monic relation $\varphi_\alpha(X) \in R[\eta_1, \ldots, \eta_d][X]$. So we have $I[\alpha] R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d]$.

(2) \Rightarrow (3): Since $I[\alpha] R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d]$ by the assumption, we have $I[\eta_i] R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d]$ for each i. Thus $I[\eta_1] \cdots I[\eta_d] R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d]$. Hence $R[\eta_1, \ldots, \eta_d]$ is flat over R by [S, Proposition 1]. Q.E.D.

PROPOSITION 12. Assume that α is anti-integral over R. If $R[\alpha]$ is flat over R, then $R[\eta_1, \ldots, \eta_d]$ is flat over R.

PROOF. Since $R[\alpha]$ is flat over R, we have $J[\alpha] = I[\alpha](1, \eta_1, \ldots, \eta_d) R = R$ by [OSY, (3.4)]. Hence $(1, \eta_1, \ldots, \eta_d) R$ is an invertible ideal of R. Localizing at $p \in \text{Spec}(R)$, we can assume that $(1, \eta_1, \ldots, \eta_d) R_p = (1/a) R_p$ for some $a \in R$. Hence $R[\eta_1, \ldots, \eta_d]_p = R_p[1/a]$, which is flat over R. Thus $R[\eta_1, \ldots, \eta_d]$ is flat over R. Q.E.D.

EXAMPLE 13. In Theorem 11, the implication (2) \Rightarrow (1) does not hold and in Proposition 9, the converse implication does not hold. Let $R := k[x,y]$ be
a polynomial ring over a field \(k \). Let \(\alpha \) be an element satisfying the minimal polynomial \(\varphi_\alpha(X) := X^2 + (1/x)X + 1/y \in k(x, y)[X] \). Then \(\alpha \) is anti-integral over \(R \). It is easy to see that \(I_\alpha = xyR \) and \(J_\alpha = (x, y)R \). Hence \(R[\alpha] \) is not flat over \(R \) (cf. [OSY, (3.4)]). But both \(1/x \) and \(1/y \) are flat elements over \(R \). Thus \(R[1/x, 1/y] \) is flat over \(R \). In this case, \(I_\alpha R[1/x, 1/y] = R[1/x, 1/y] \) but \(I_\alpha R[\alpha] \neq R[\alpha] \). Indeed, \(J_\alpha \neq R \) and \(I_\alpha R[\alpha] \subseteq J_\alpha R[\alpha] \neq R[\alpha] \).

Now we investigate the relationship between \(R[\alpha] \) and \(R[\eta_1, \ldots, \eta_d] \). In the rest of this paper, let \(\overline{R} \) denote the integral closure of \(R \) in \(K \). Then \(\overline{R} \) is a Krull domain (cf. [M]).

Theorem 14. \(R[\alpha] \) is integral over \(R \) if and only if \(R[\eta_1, \ldots, \eta_d] \) is integral over \(R \).

Proof. (\(\Rightarrow \)): Since \(\overline{R} \) is a Krull domain, \(\alpha \) is anti-integral over \(\overline{R} \) (cf. [OSY]). By the assumption, \(\alpha \) is integral over \(R \), and hence \(\alpha \) is integral over \(\overline{R} \). Thus \(\varphi_\alpha(X) \in \overline{R}[X] \) (cf. [OSY]). So we have \(\eta_1, \ldots, \eta_d \) are integral over \(R \). Therefore \(R[\eta_1, \ldots, \eta_d] \) is integral over \(R \).

(\(\Leftarrow \)): Note that \(\alpha \) satisfies the monic relation \(\varphi_\alpha(X) = 0 \) over \(R[\eta_1, \ldots, \eta_d] \). Since \(R[\eta_1, \ldots, \eta_d] \) is integral over \(R \), \(\alpha \) is integral over \(R \). Q. E. D.

Theorem 15. Assume that \(\alpha \) is super-primitive over \(R \). If \(I_\alpha R[\alpha] = R[\alpha] \), then \(R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha] \).

Proof. Since \(I_\alpha R[\alpha] = R[\alpha] \), \(R[\alpha] \) is flat over \(R \) by Proposition 1. Take \(P \in \text{Dp}_1(R[\alpha]):= \{ P \in \text{Spec}(R) \mid \text{depth} \cap P = 1 \} \) and put \(p = P \cap R \). Then \(p \in \text{Dp}_1(R) \). Since \(\alpha \) is super-primitive over \(R \), \(J_\alpha R_p = I_\alpha(1, \eta_1, \ldots, \eta_d) \cap R_p = R_p \). So \(I_\alpha R_p \) is invertible ideal, and hence \(I_\alpha R_p \) is a principal ideal of \(R_p \). Thus there exists an element \(a \in I_\alpha \) such that \(I_\alpha R_p = aR_p \). Since \(I_\alpha R[\alpha] = R[\alpha] \), \(aR_\alpha \) is principal ideal of \(R_\alpha \). So \(I_\alpha \subseteq I_\alpha \). Since \(I_\alpha \subseteq I_\alpha \), we have \(a\eta_1 = b \) for some \(b \in R_\alpha \). Hence \(\eta_1 \in R_\alpha \subseteq R[\alpha] \) because \(a \) is a unit in \(R_\alpha \). Therefore \(\eta_1 \in \bigcap R[\alpha] \subseteq R[\alpha] \) which means that \(R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha] \). Q. E. D.

Corollary 15.1. Assume that \(\alpha \) is super-primitive over \(R \). Then \(I_\alpha R[\alpha] = R[\alpha] \) if and only if \(R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha] \).

Proof. (\(\Rightarrow \)): Since \(I_\alpha R[\alpha] = R[\alpha] \), \(I_\alpha R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d] \) and \(R[\eta_1, \ldots, \eta_d] \) is flat over \(R \) by Theorem 11. By Theorem 15, we have \(R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha] \).

(\(\Leftarrow \)): Let \(I_{\eta_1, \ldots, \eta_d} := \bigcap_{i=1}^d I_{\eta_i}^{R[\eta_1, \ldots, \eta_d]} \), where \(I_{\eta_i}^{R[\eta_1, \ldots, \eta_d]} := \{ b \in R[\eta_1, \ldots, \eta_d] \mid b\eta_i \in R[\eta_1, \ldots, \eta_d] \} \). Since \(\alpha \) is anti-integral over \(R \), \(\alpha \) is also anti-integral over \(R[\eta_1, \ldots, \eta_d] \). Since \(R[\eta_1, \ldots, \eta_d] \) is flat over \(R \), we have \(I_{\eta_1, \ldots, \eta_d}^{R[\eta_1, \ldots, \eta_d]} = I_{\eta_1, \ldots, \eta_d} R[\eta_1, \ldots, \eta_d] \). Since \(R[\alpha] \) is integral over \(R[\eta_1, \ldots, \eta_d] \) with the integral dependence \(\varphi_\alpha(X) = 0 \), we have \(I_{\eta_1}^{R[\eta_1, \ldots, \eta_d]} = R[\eta_1, \ldots, \eta_d] \). So \(I_{\eta_1, \ldots, \eta_d} R[\eta_1, \ldots, \eta_d] = R[\eta_1, \ldots, \eta_d] \). Hence \(I_{\alpha} R[\alpha] = R[\alpha] \) because \(R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha] \). Q. E. D.

Corollary 15.2. Assume that \(\alpha \) is super-primitive over \(R \). If \(I_\alpha R[\alpha] = R[\alpha] \), then \(R[\alpha] \cap K = R[\eta_1, \ldots, \eta_d] \).
PROOF. Note that $K(\eta_1, \ldots, \eta_d) = K$. By Theorem 15, $R[\eta_1, \ldots, \eta_d] \subseteq R[\alpha]$. Since $R[\alpha]$ is integral over $R[\eta_1, \ldots, \eta_d]$ and α is anti-integral over $R[\eta_1, \ldots, \eta_d]$, $R[\alpha]$ is free over $R[\eta_1, \ldots, \eta_d]$ of rank d. Hence $R[\alpha] = R[\eta_1, \ldots, \eta_d] + R[\eta_1, \ldots, \eta_d]\alpha + \ldots + R[\eta_1, \ldots, \eta_d]\alpha^{d-1} \subseteq K + K\alpha + \ldots + K\alpha^{d-1}$. Hence $R[\alpha] \cap K = R[\eta_1, \ldots, \eta_d]$. Q.E.D.

THEOREM 16. Assume that α is super-primitive over R of degree d. Then $R[\alpha] \cap K = R$ if and only if $R[\alpha] \cap R[\eta_1, \ldots, \eta_d] = R$.

PROOF. The implication (\Rightarrow) is obvious because $R[\eta_1, \ldots, \eta_d] \subseteq K$. We must the converse implication. Take $a \in \bigcap_{i=1}^{d-1} I_n_i$. Then $a\eta_d = -(a\alpha^d + a\eta_1\alpha^{d-1} + \ldots + a\eta_{d-1}\alpha) \in R[\alpha]$. Thus we have $(\bigcap_{i=1}^{d-1} I_n_i)\eta_d \subseteq R[\alpha] \cap R[\eta_1, \ldots, \eta_d] = R$, which implies that $\bigcap_{i=1}^{d-1} I_n_i \subseteq I_{\eta_d}$. Hence α is exclusive by [OY2, Proposition 4]. Q.E.D.

PROPOSITION 17. If there exists $p \in \text{Spec}(R)$ such that $R[\eta_1, \ldots, \eta_d]_p$ is integral over R_p and $R[\eta_1, \ldots, \eta_d]_p \neq R_p$, then α is not anti-integral over R.

PROOF. Suppose that α is anti-integral over R. Then α is anti-integral over R_p. Since $R[\eta_1, \ldots, \eta_d]_p$ is integral over R_p, it follows that α is integral over R_p by Theorem 14. Thus $\varphi_\alpha(X) \in R_p[X]$ (cf. [OSY,(2.2)]), which contradicts the assumption $R[\eta_1, \ldots, \eta_d]_p \neq R_p$. Q.E.D.

Let $C(R/R)$ denote the conductor between R and \overline{R}.

PROPOSITION 18. Assume that \overline{R} is a finite R-module. If there exists a prime divisor p of $I[\alpha]$ such that $p \supseteq I[\alpha] : R C(R/R)$, then α is not anti-integral over R.

PROOF. Localizing at p, we may assume that (R,p) is a local ring with $p \in \text{Dp}_1(R)$. We have $C(\overline{R}/R) \subseteq I[\alpha] \subseteq I_n_i$. Thus $\eta_i \in C(\overline{R}/R)^{-1} = \overline{R}$ for $1 \leq i \leq d$. But since $p \supseteq I[\alpha]$, we have $R[\eta_1, \ldots, \eta_d] \neq R$. Our conclusion follows from Proposition 17. Q.E.D.

THEOREM 19. If grade $(I[\alpha] + C(\overline{R}/R)) > 1$, then α is anti-integral over R.

PROOF. We have only to show that α is anti-integral over R_p for each $p \in \text{Dp}_1(R)$ because $I[\alpha]$ is a divisorial ideal of R(cf. [OSY]). From the assumption, either $I[\alpha] \not\subseteq p$ or $C(\overline{R}/R) \not\subseteq p$. If $I[\alpha] \not\subseteq p$, then $\varphi_\alpha(X) \in R_p[X]$. If $C(\overline{R}/R) \not\subseteq p$, then $R_p = \overline{R}_p$, which is a Krull domain. Hence α is anti-integral over R by [OSY,(1.13)]. Q.E.D.

We close this paper by giving the following result.

PROPOSITION 20. Assume that α is anti-integral over R of degree d. Let β_1, \ldots, β_n be elements in K, each of which is super-primitive over R. If $R[\alpha]$ is flat over R, then β_1, \ldots, β_n are super-primitive over $R[\alpha]$.

PROOF. Note that $I[\beta_i] = I[\beta_i] := R : R \beta_i$ and $J[\beta_i] = I[\beta_i] + \beta_i I[\beta_i] = I[\beta_i] + I[\beta_i]^{-1}$ because $\beta_i \in K$. Since β_i is super-primitive over R, we have grade $(I[\beta_i] + I[\beta_i]^{-1}) = \text{grade}(J[\beta_i]) > 1$ by definition. Let $T_{\beta_i} := R[\alpha] : R \beta_i$. Since $R[\alpha]$ is flat over R,
we have $I_{\beta_i} + I_{\beta_i^{-1}} \subseteq T_{\beta_i} + T_{\beta_i^{-1}}$, and hence we have \(\text{grade}(T_{\beta_i} + T_{\beta_i^{-1}}) > 1 \). Thus β_i is super-primitive over $R[\alpha]$ by [SOY,(2.5)]. Q.E.D.

References

