<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Star operations and generalized integral closures</td>
</tr>
<tr>
<td>Author(s)</td>
<td>OKABE, Akira; MATSUDA, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 24: 7-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術情報リポジトリ (茨城大学学術情報リポジトリ)
1. INTRODUCTION

Throughout this paper, R will be a commutative integral domain with identity and K will denote its quotient field.

Let $F(R)$ be the set of nonzero fractional ideals of R, that is, $I \in F(R)$ in case I is a nonzero R-submodule of K such that there exists some $0 \neq d \in R$ such that $dI \subset R$.

Each ideal of R is a fractional ideal of R and is called an integral ideal of R. We shall denote the set of nonzero integral ideals of R by $I(R)$.

A fractional ideal of R is called a finitely generated fractional ideal in case it is finitely generated as an R-module of K. We shall denote the set of nonzero finitely generated fractional ideals of R and the set of nonzero finitely generated integral ideals of R by $F_f(R)$ and $I_f(R)$ respectively.

A star operation on R is a mapping $I \mapsto I^*$ of $F(R)$ into itself that satisfies the following three properties, for all $0 \neq a \in K$ and $I, J \in F(R)$:

1. $(a)^* = (a)$ and $(aI)^* = aI^*$;
2. $I \subset I^*$, and if $I \subset J$, then $I^* \subset J^*$; and
3. $(I^*)^* = I^*$.

If we set $I_d = I$ for every $I \in F(R)$, then the mapping $I \mapsto I_d$ is a star operation on R and is called the d-operation. For any $I \in F(R)$, let

$$I^{-1} = R : I = \{x \in K \mid xI \subset R\}$$

and denote $(I^{-1})^{-1}$ by I_v. Then the mapping $I \mapsto I_v$ is a star operation on R and is called the v-operation.

An element $u \in K$ is almost integral over R in case there exists an element $0 \neq r \in R$ such that $ru^n \in R$ for all integers $n \geq 1$, or equivalently, there is a nonzero ideal I of R for which $u \in I : I$.

Similarly an element $u \in K$ is integral over R in case u satisfies an equation

$$u^n + c_1u^{n-1} + \cdots + c_n = 0,$$

where $c_i \in R$, or equivalently, there is a nonzero finitely generated ideal I of R for which $u \in I : I$.

We denote the set of elements of K which are almost integral over R and the set of elements of K which are integral over R by R' and \bar{R} respectively.
In a recent paper [AHZ], D.F. Anderson, E.G. Houston and M. Zafrullah have introduced the notion of pseudo-integrality. An element u of K is pseudo-integral over R if $u \subseteq I_v : I_v$ for some nonzero finitely generated ideal I_v of R and the set of elements of K which are pseudo-integral over R is denoted by \hat{R}.

It is well known that \hat{R}, the integral closure of R, and R', the complete integral closure of R, are overrings of R, i.e., rings between R and K. In [AHZ, Proposition 1.1], they proved that \hat{R}, the pseudo-integral closure of R, is an overring of R.

It is also known that R' is integrally closed, as shown in [W, p.76] but is not necessarily completely integrally closed, that is, $(R')' \neq R'$, as shown in [GH, Example 1]. In [AHZ, Theorem 1.2], they showed that \hat{R} is integrally closed.

In Section 2, we define R^*, the *-integral closure of R for any star operation $*$ on R. In Theorem 2.8 we show that R^* is an integrally closed overring of R. In Theorem 2.11 we give a generalization of Proposition 1.3 in [AHZ] and in Theorem 2.14 we also give a generalization of Corollary 1.6 in [AHZ].

In Section 3, we provide some examples concerning pseudo-integrality. In particular we give some examples of non-Mori pseudo-integrally closed domains which are not completely integrally closed.

2.*-INTEGRAL CLOSURES The set of all star operations on R will be denoted by $S(R)$.

For any $* \in S(R)$, a fractional ideal $I \in F(R)$ is called a $*$-ideal if $I^* = I$. We will denote the set of all $*$-ideals of R by $F_*(R)$.

We may define a partial order \leq on $S(R)$ by $*_1 \leq *_2$ if and only if $I^*_1 \subseteq I^*_2$ for every $I \in F(R)$.

PROPOSITION 2.1 (cf. [AA]). For $*_1, *_2 \in S(R)$, the following conditions are equivalent:

1. $*_1 \leq *_2$,
2. $(I^*_2)^*_1 = I^*_2$ for every $I \in F(R)$,
3. $(I^*_1)^*_2 = I^*_2$ for every $I \in F(R)$,
4. $F_{*_2}(R) \subseteq F_{*_1}(R)$.

PROOF. The proof is easy and is omitted.

Recall that for any $I \in F(R)$, we have $I_v = \cap \{Rx \mid I \subseteq Rx, x \in K\}$. Hence we have $I \subseteq I^* \subseteq I_v$ for all star operations $*$ on R and all $I \in F(R)$, and so the d-operation is a smallest element in $S(R)$ and the v-operation is a greatest element in $S(R)$.

DEFINITION 2.2. For any star operation $*$ on R, we set

$$R^* = \cup \{I^* : I \in F_*(R)\} = \cup \{I^* : I \in I_v(R)\}$$

and we shall call R^* the $*$-integral closure of R.
THEOREM 2.3. For any star operation $*$ on R, R^* is an overring of R.

PROOF. First note that for any $I, J \in F_f(R)$, $I^* : I^* \subseteq (IJ)^* : (IJ)^*$. In fact, if $uI^* \subseteq I^*$, then $uI^*J^* \subseteq I^*J^*$ and so

$$u(IJ)^* = (uIJ)^* = (u(I^*J^*))^* \subseteq (I^*J^*)^* = (IJ)^*.$$

Thus

$$(I^* : I^*) \cup (J^* : J^*) \subseteq (IJ)^* : (IJ)^*$$

for all $I, J \in F(R)$, and therefore $R^* = \bigcup \{I^* : I^* | I \in F_f(R)\}$ is a directed union. Since each $I^* : I^*$ is a ring, R^* is a ring, as required.

REMARK 2.4. For any star operation $*$ on R, it is easy to see that

$$(I^* : I^*) \cup (J^* : J^*) \subseteq (IJ)^* : (IJ)^*$$

for all $I, J \in F(R)$.

PROPOSITION 2.5. If $*_1 \leq *_2$ in $S(R)$, then we have $R^{*_1} \subseteq R^{*_2}$.

PROOF. Let $x \in I^{*_1} : I^{*_1}$ with $I \in F_f(R)$. Then, it follows from Proposition 2.1 that

$$xI^{*_2} = x(I^{*_1})^{*_2} = (xI^{*_1})^{*_2} \subseteq (I^{*_1})^{*_2} = I^{*_2}.$$

Thus $I^{*_1} : I^{*_1} \subseteq I^{*_2} : I^{*_2}$ for all $I \in F_f(R)$ and hence $R^{*_1} \subseteq R^{*_2}$, as wanted.

COROLLARY 2.6. For any star operation $*$ on R, we have $\tilde{R} \subseteq R^* \subseteq \check{R}$.

DEFINITION 2.7. An element $u \in K$ is said to be $*$-integral over R if $u \in I^* : I^*$ for some $I \in F_f(R)$. An overring T of R is said to be $*$-integral over R if each element of T is $*$-integral over R.

We now generalize Theorem 1.2 in [AHZ] to the case of an arbitrary star operation $*$ on R.

THEOREM 2.8. Let T be an overring of R and let x be an element of K. Suppose that T is $*$-integral over R and that x is integral over T. Then x is $*$-integral over R. In particular, R^* is integrally closed.

PROOF. Since x is integral over T, there exist elements $a_1, \ldots, a_k \in T$ such that x is integral over $S = R[a_1, \ldots, a_k]$. Then, since each a_i is $*$-integral over R, there exists an element J_i in $F_f(R)$ such that $a_i \in J_i^* : J_i^*$.

If we set $J = J_1J_2 \cdots J_k \in F_f(R)$, then it follows that $a_iJ^* \subseteq J^*$ for all $i = 1, 2, \ldots, k$. Thus we have $S \subseteq J^* : J^*$. Now, since x is integral over S, there is a nonzero finitely generated ideal $I = Sb_1 + \cdots + Sb_m$ of S such that $xI \subseteq I$.

If we set $H = Jb_1 + \cdots + Jb_m$, then H is a finitely generated fractional ideal of R. In fact,

$$H = Jb_1 + \cdots + Jb_m \subseteq JS \subseteq J^*S \subseteq J^*,$$

and so if $dJ^* \subseteq R$ with some $0 \neq d \in R$, then, clearly $dH \subseteq R$.

Next, since $JSb_i \subset J^*Sb_i \subset J^*b_i$ for each $i = 1, \ldots, m$, it follows that

$$JI = JSb_1 + \cdots + JSb_m \subset J^*b_1 + \cdots + J^*b_m = (Jb_1)^* + \cdots + (Jb_m)^* \subset (Jb_1 + \cdots + Jb_m)^* = H^*.$$

Then, since $xb_i \in xI \subset I$ for each $i = 1, \ldots, m$, we have

$$xH = x(Jb_1 + \cdots + Jb_m) \subset JI \subset H^*.$$

Hence we have

$$xH^* = (xH)^* \subset (H^*)^* = H^*.$$

Thus $x \in H^* : H^* \subset R^*$, completing the proof.

Definition 2.9. Let T be an overring of R and let $*$ and $*'$ be star operations on R and T respectively. Then the star operation $*'$ is said to be $*$-linked (or T is said to be $*$-linked) in case, for any $I \subseteq I(R)$, such that $I^* = R$, we have $(IT)^* = T$.

Definition 2.10. An integral domain R is called a $*$-UMT ring if each nonzero prime P upper to zero in $R[X]$ contains an element f such that $(c_R(f))^* = R$.

A star operation $*$ on R is said to have finite character or is said to be of finite type if for each $I \subseteq F(R)$, $I^* = \bigcup\{J^* \mid J \in F_f(R), J \subseteq I\}$. Given a star operation $*$ on R, we can always define a new star operation $*_*$ on R as follows:

$$I^*_* = \bigcup\{J^* \mid J \in F_f(R) \text{with} J \subseteq I\}.$$

Then $*_*$ is a star operation of finite type on R. It is easily seen that a star operation $*$ has finite character if and only if $I^* = I^*_*$ for all $I \subseteq F(R)$.

If $*$ is a star operation on R, then we call R a Prüfer $*$-multiplication ring if for each nonzero finitely generated ideal I of $R[X]$ there is a finitely generated fractional ideal J of R such that $(IJ)^* = R$.

It is shown in [HMM, Theorem 1.1] that if $*$ is a star operation of finite type on R, then R is a Prüfer $*$-multiplication ring if and only if R is integrally closed and R is a $*$-UMT ring.

Theorem 2.11. Let $*$ be a star operation on R and let $*'$ be a star operation of finite type on R^* such that $*'$ is $*$-linked. Then, if R is a $*$-UMT ring, then R^* is a Prüfer $*'$-multiplication ring.

Proof. First note that R^* is integrally closed by Theorem 2.8.

By [HMM, Theorem 1.1], we need only to show that R^* is a $*'$-UMT ring. Let P be a nonzero prime upper to zero in $R^*[X]$. Then, since $P \cap R[X]$ is a nonzero prime upper to zero in $R[X]$, it contains an element f such that $(c_R(f))^* = R$. Now, set $I = c_R(f)$. Since $*'$ is $*$-linked, we have $(IR^*)^* = R^*$, and a fortiori, $(c_R(f))^* = R^*$. Thus R^* is a $*'$-UMT ring, as wanted.
REMARK 2.12. It is obvious that we may replace * and *' by *s and (*')s, respectively in Definitions 2.9 and 2.10, and that $R^* = R^{**}$. If $*=v$, then the v-operation is usually called the t-operation.

REMARK 2.13. In [HH, Proposition 4.3], it is shown that if * denotes either the v-operation or the t-operation, then $(IR[X])^* = I^*R[X]$ for each $I \in F(R)$. Hence it is easily seen that if we take * = *' = t, then the conditions in Theorem 2.11 are satisfied.

If $*=v$ or $*=t$, then a *-UMT ring is the same as a UMT-domain, and $R^* = \tilde{R}$. Therefore, Theorem 2.11 is a generalization of Proposition 1.3 in [AHZ].

As noted in Remark 2.13, if $*=v$ or $*=t$, then $(IR[X])^* = I^*R[X]$ for all $I \in F(R)$. Now let * be a star operation on $R[X]$. If we define *' on R by $I^* = (IR[X])^* \cap R$, then, by [HMM, Proposition 2.1], *' is a star operation on R and $(I^* R[X])^* = (IR[X])^*$ for each ideal I of R.

THEOREM 2.14. Let * be a star operation on $R[X]$ and let *' be the star operation on R induced from * as above. Suppose that $(IR[X])^* = I^*R[X]$ for each nonzero finitely generated ideal I of R. Then we have $(R[X])^* = R^*[X]$

Proof. Let u be an element of R^*. Then $uI^* \subset I^*$ for some $I \in I_f(R)$, and hence $uI^* R[X] \subset I^* R[X]$. Then, by hypothesis, $u(IR[X])^* \subset (IR[X])^*$, and therefore we have $u \in (R[X])^*$. Thus we get $R^* \subset (R[X])^*$ and so $R^*[X] \subset (R[X])^*$.

Conversely, let $v \in (R[X])^*$. Then $vI^* \subset I^*$ for some $I \in I_f(R[X])$. Note that $(R[X])^* \subset K[X]$. In fact, since $\tilde{R}[X] = (\tilde{R}[X])$ by [AHZ, Corollary 1.6], we have

(email the rest of the theorem)
3. EXAMPLES It is well known that if R is a Noetherian domain, then $\tilde{R} = R'$, and so $\tilde{R} = \bar{R} = R'$.

Suppose that R is a quasi-coherent domain, i.e., each intersection of finitely many principal ideals of R is finitely generated, or equivalently, $I^{-1} = R : I$ is finitely generated for each nonzero finitely generated ideal I of R. Then we have $\tilde{R} = \bar{R}$. Hence, if R is a coherent domain, i.e., each intersection of two finitely generated ideals of R is finitely generated, then $\tilde{R} = \bar{R}$.

If R is a Mori domain, then for each nonzero ideal I of R there is a finitely generated ideal J of R for which $I_v = J_v$. Hence, if R is a Mori domain, then we have $\tilde{R} = R'$.

First we shall show an example of a non-Mori domain which is pseudo-integrally closed, where R is pseudo-integrally closed if and only if $R = \tilde{R}$.

Example 3.1. Let $V = \mathbb{Q}[[X]] = \mathbb{Q} + X\mathbb{Q}[[X]]$ where \mathbb{Q} is the set of rational numbers. Then V is a DVR with maximal ideal $M = X \mathbb{Q}[[X]]$. Let $\varphi : V \rightarrow V/M = \mathbb{Q}$ be the canonical surjection and let $R = \varphi^{-1}(\mathbb{Z})$.

Then $R = \mathbb{Z} + X\mathbb{Q}[[X]] = \mathbb{Z} + M$. By [B, Corollary 3.5], R is a non-Mori domain. Next, by [AHZ, Proposition 1.8(i)],

$$\tilde{R} = \tilde{\mathbb{Z}} + M = \mathbb{Z} + M = R,$$

because \mathbb{Z} is Noetherian and so $\tilde{\mathbb{Z}} = \tilde{\mathbb{Z}} = \mathbb{Z}$. Hence R is pseudo-integrally closed.

By [BG, Theorem 2.1 (a)], the complete integral closure of $R = \mathbb{Z} + X\mathbb{Q}[[X]]$ is $V = \mathbb{Q}[[X]]$, and hence R is not completely integrally closed. Thus $R = \tilde{R} \subset \neq R'$.

In this example, each ideal of R containing M is of the form $n\mathbb{Z} + M$ with some $n \in \mathbb{N}$, the set of positive integers. Hence, by [BG, Theorem 4.1],

$$(n\mathbb{Z} + M)_v = (n\mathbb{Z})_v + M = n\mathbb{Z} + M.$$

Thus $n\mathbb{Z} + M$ is a divisorial ideal. Hence any ideal of R properly containing M is divisorial.

It is shown in [AHZ, Lemma 1.4] that if T is a flat extension domain of R, then $\tilde{R} \subset \tilde{T}$. But, in general, the containment $R \subset T$ does not imply $\tilde{R} \subset \tilde{T}$ (cf. [AHZ, Example 3.2]).

Remark 3.2. An example of an integral domain R such that $R \subset \neq \tilde{R} \subset \neq \tilde{R}$, is given in [AHZ, Example 1.9]. Of course, R is neither quasi-coherent nor Mori.

Example 3.3. Assume that $R \subset \tilde{R}$ and let $*$ be an e.a.b. star operation on R. If S is the Kronecker function ring of R with respect to the star operation $*$, then $R \subset S$, but $\tilde{R} \subset \neq \tilde{S}$. In fact, S is a Bezout ring ([G,(32.7),(b)]). Therefore $\tilde{S} = S$. Since $S \cap K = R$ ([G,(32.7),(a)]), we see that

$R \nsubseteq \tilde{S}$
As shown in [AHZ, Example 2.1], the pseudo-integral closure of a domain need not be pseudo-integrally closed.

Here we give an example of an integral domain \(R \) such that \(\tilde{R} = \hat{R} \).

Example 3.4. Let \(V \) be a DVR of the form \(F + M \), where \(F \) is a field and \(M \) is the maximal ideal of \(V \). Let \(D \) be a subring of \(F \) such that the quotient field of \(D \) is properly contained in \(F \). If we set \(R = D + M \), then, by [AHZ, Proposition 1.8 (ii)], we have \(\hat{R} = V \). Since \(V \) is completely integrally closed, \(\tilde{R} = \hat{V} = V' = V = \hat{R} \).

Let us provide an example of a non-Mori domain \(R \) for which \(\tilde{R} = R' \).

Example 3.5 (cf.[AM]). Let \(R = \mathbb{Z}[\{X/p_i, Y/p_i\}_{i=1}^\infty] \), where \(\mathbb{Z} \) is the set of integers, \(\{p_i\}_{i=1}^\infty \) is the set of positive primes numbers, and \(X, Y \) are indeterminates over \(\mathbb{Z} \). Then, [AM,(a),p.52] shows that \(R \) is not a Krull ring. Moreover, its proof shows that \(R_M \) is completely integrally closed for each maximal ideal \(M \) of \(R \). Therefore \(R \) is a completely integrally closed ring and is not a Mori ring.

References

