<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>トピック</td>
<td>Strongly n-generated semigroup rings</td>
</tr>
<tr>
<td>著者</td>
<td>MATSUDA, Ryuki</td>
</tr>
<tr>
<td>引用</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 24: 1-5</td>
</tr>
<tr>
<td>発行日</td>
<td>1992</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3022</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術企画部学術情報課（図書館） 情報支援係
http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
Strongly n-generated semigroup rings

RYŪKI MATSUDA*

Let A be a ring (commutative with identity). If, for each 2-generated ideal I of A and for each nonzero element a of I there exists an element a_1 of A such that $I = (a_1, a)$, then A is said to be strongly 2-generated ([3]).

If, for each $(n+1)$-generated ideal I of A and for each nonzero element a of I there exist elements a_1, \ldots, a_n of A such that $I = (a_1, \ldots, a_n, a)$, then we say that A is strongly $(n+1)$-generated.

If, for each $(n+1)$-generated ideal I of A and for each regular element a of A with $a \not\in I$ there exist a_1, \ldots, a_n of A such that $I = (a_1, \ldots, a_n, a)$, then we say that A is strongly r-$(n+1)$-generated.

Let S be a torsion-free cancellative abelian semigroup $\neq 0$ (nonzero and written additively). The aim of this paper is to determine a necessary and sufficient condition for the semigroup ring $A[X;S]$ of S over a ring A to be strongly $(n+1)$-generated or strongly r-$(n+1)$-generated.

Lemma 1 ([7, (4.1)]). Let A be a 0-dimensional ring. Let p be a prime number, $n \in N$ and $n_i \in N$ $(1 \leq i \leq n+2)$ such that $p1_A$ is a nilpotent of A and $n_{i+1} > n + n_i$ for each i. Assume in $A[X;Q]$ that

$$(p^nY^{n_1}, p^{n-1}Y^{n_2}, \ldots, pY^{n_n}, Y^{n_{n+1}}) = (f_1, \ldots, f_n, Y^{n_{n+2}})$$

with $Y = 1 - X^1$. Then we have $p^n1_A = 0$.

Lemma 2 ([7, (4.2)]). Assume that $A[X;Q]$ has r-n-generator property. Then $\dim(A) = 0$.

Let G be a torsion-free abelian group (nonzero and written additively).

Lemma 3 ([7, (2.2)]). If $A[X;G]$ has r-n(1/2)-generator property, then $A[X;G^*]$ has r-n(1/2)-generator property, where G^* is the divisible hull of G.

Lemma 4 ([1, Proposition 4]). Let $M = Aa_1 + \cdots + Aa_n$ be a finitely generated module over a 0-dimensional ring A, and assume that M is generated by m elements. Then there exists an orthogonal set $\{e_1, \ldots, e_h\}$ of idempotents in A with $e_1 + \cdots + e_h = 1$ such that, for each j, e_jM is generated, as an Ae_j-module, by less than $m+1$ elements chosen from the set $\{e_ja_1, \ldots, e_ja_n\}$.

Lemma 5 ([1, Lemma 7]). Let S be a subsemigroup of Q_0 and $0 < s \in S$. Then each idempotent of $A[X;S]/(X^s)$ is the residue class of an idempotent of A.

Lemma 6 ([1, Corollary 12]). $A[X;S]$ has n-generator property if and only if one of the following conditions hold:

Received March 28, 1992.

1991 Mathematics Subject Classification. Primary 13A02 Secondary 20M25.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
(1) S is isomorphic with a subgroup of Q; $\dim(A) = 0$ and for each $\{a_1, \cdots, a_n\} \subset N(A)$ there exists a decomposition $A = A e_1 \oplus \cdots \oplus A e_h$ such that for each j, $a_1 e_j = 0$ or $a_i e_j \in (a_1, \cdots, a_{i-1}) e_j$ for some $i \geq 2$.

(2) S is isomorphic with a subgroup of Q; $\dim(A) = 0$ and for each finitely generated nil ideal I there exists a decomposition $A = A e_1 \oplus \cdots \oplus A e_h$ such that for each j, $\nu(I e_j) < n$.

(3) S is isomorphic with a subsemigroup of Q_0 with $o(S) < \infty$; $\dim(A) = 0$ and for each $\{a_1, \cdots, a_m\} \subset N(A)$ with $(m+1) o(S) > n$ there exists a decomposition $A = A e_1 \oplus \cdots \oplus A e_h$ such that for each j, $a_1 e_j = 0$ or $a_i e_j \in (a_1, \cdots, a_{i-1}) e_j$ for some $i \geq 2$.

(4) S is isomorphic with a subsemigroup of Q_0 with $o(S) < \infty$; $\dim(A) = 0$ and for each finitely generated nil ideal I there exists a decomposition $A = A e_1 \oplus \cdots \oplus A e_h$ such that for each j, $(\nu(I e_j) + 1) o(S) \leq n$.

Lemma 7 ([7,(6.1)]). Assume that $A[X;Q]$ has r-$(n+1/2)$-generator property. Let p be a prime number such that $p1_A$ is a nilpotent of A. Then we have $p^n 1_A = 0$.

Lemma 8 ([7,(6.2)]). Assume that $A[X;Q]$ has r-$(n+1/2)$-generator property. Then $A[X;Q]$ has n-generator property.

Lemma 9. Assume that $A[X;Q]$ is strongly r-$(n+1)$-generated. Then $\dim(A) = 0$.

Proof. The proof is similar with the proof of Lemma 2.

Lemma 10. If $A[X;G]$ is strongly r-$(n+1)$-generated, then $A[X;G^*]$ is strongly r-$(n+1)$-generated.

Proof. The proof is similar with the proof of Lemma 3.

Lemma 11. If $A[X;G]$ is strongly r-$(n+1)$-generated, then $t.f.r.(G) = 1$.

Proof. Suppose that $t.f.r.(G) \geq 2$. By Lemma 10, $(A'[X;Q])[X;Q]$ is strongly r-$(n+1)$-generated for some ring A'. This contradicts with Lemma 9.

Lemma 12. If $A[X;S]$ is strongly r-$(n+1)$-generated, then $\dim(A) = 0$.

Proof. By Lemma 11, $t.f.r.(G) = 1$. By Lemma 10, $A[X;Q]$ is strongly r-$(n+1)$-generated. By Lemma 9, $\dim(A) = 0$.

Lemma 13. Let S be a subsemigroup of Q_0. If $A[X;S]$ is strongly r-$(n+1)$-generated, then $o(S) < \infty$.

Proof. Suppose that $o(S) = \infty$. Then S has a finitely generated subsemigroup T_0 such that each finitely generated subsemigroup T' of S containing T_0 has order $\leq n + 2$. Set $\min\{o(T') : T' \text{ is a finitely generated subsemigroup of } S \text{ containing } T_0\} = m$. We have $m \geq n + 2$. Let T be a finitely generated subsemigroup of S containing T_0 such that $o(T) = m$. We may assume that $q(T) = Z$. We have $h + Z_0 \subset T$ for some $h \in Z_0$. Let l be a large natural number. We have

$$(X^h, X^{h+1}, \cdots, X^{h+n}) = (g_1, \cdots, g_n, X^l)$$
in \(A[X;S] \). Let \(M \) be a maximal ideal of \(A \). Set \(A/M = k \). In \(k[X;S] \) we have

\[
(X^h, X^{h+1}, \ldots, X^{h+n}) = (f_1, \ldots, f_n, X^h)
\]

for some \(f_i \in k[X;S] \). Set \(k[X;S]/(X^h) = B \). In \(B \) we have

\[
(X^h, X^{h+1}, \ldots, X^{h+n}) = (f_1, \ldots, f_n).
\]

Apply Lemma 4 and Lemma 5. Then this ideal is generated in \(B \) by \(n \) elements from \(\{X^h, \ldots, X^{h+n}\} \). Considering the order of \(S \), this is impossible. Therefore \(o(S) < \infty \).

Lemma 14. Let \(S \) be a subsemigroup of \(Q_0 \). If \(A[X;S] \) is strongly \(r-(n+1) \)-generated, then \(A[X;S] \) has \(n \)-generator property.

Proof. By Lemma 12, we have \(\dim(A) = 0 \). By Lemma 13 we have \(o(S) = k \). Set \(o(S) = k \). Let \(\{a_1, \ldots, a_m\} \subset N(A) \) with \((m+1)k > n \). Set \(S \cap Z_0 = S_1 \). We may assume that \(o(S_1) = k \) and \(q(S_1) = Z \). We have \(g+Z_0 \subset S_1 \) for some \(g \in N \). We set

\[
\beta = \{a_jX^{g+jk-i} \mid 1 \leq j \leq m+1, 1 \leq i \leq k\},
\]

where \(a_{m+1} = 1 \). If \(km < n+1 \), then we set

\[
\beta' = \{f \in \beta \mid g \leq \deg(f) \leq g+n\}.
\]

If \(km \geq n+1 \), then we set

\[
\beta' = \{f \in \beta \mid g \leq \deg(f) \leq g+n-1\} \cup \{X^{g+mk}\}.
\]

Then note that \(X^{g+mk} \in \beta' \). Let \(l \) be a large natural number. We have

\[
\beta' A[X;S] = (f_1, \ldots, f_n, X^{l(g+mk)})
\]

for some \(f_i \in A[X;S] \). Set \(\tilde{A} = A[X;S]/(X^{l(g+mk)}) \). Apply Lemma 4 and Lemma 5. In \(\tilde{A} \), \(\beta' \tilde{A} \) is \(n \)-generated. Hence there exists a decomposition \(\tilde{A} = \tilde{A}e_1 \oplus \cdots \oplus \tilde{A}e_k \) such that \(\beta' \tilde{A}e_\alpha \) is generated by \(n \) elements from the set \(\beta' \tilde{A}e_\alpha \) for each \(\alpha \). We may assume that each \(e_\alpha \in A \). There exists \(a_jX^{g+jk-i} \in \beta' \) such that

\[
a_jX^{g+jk-i}e_\alpha \in (\beta' - \{a_jX^{g+jk-i}\}, X^{l(g+mk)})A[X;S]e_\alpha
\]

for some \(i, j \). It follows that \(a_je_\alpha = 0 \) if \(j = 1 \) and \(a_je_\alpha \in (a_1, \ldots, a_{j-1})e_\alpha \) if \(j > 1 \). By Lemma 6, \(A[X;S] \) has \(n \)-generator property.

Lemma 15. Assume \(A[X;Q] \) is strongly \(r-(n+1) \)-generated. Let \(p \) be a prime number such that \(p1_A \) is a nilpotent of \(A \). Then \(p^n1_A = 0 \).

Proof. By Lemma 9, \(\dim(A) = 0 \). Lemma 1 implies that \(p^n1_A = 0 \).
LEMMA 16. Assume that $A[X; Q]$ is strongly r-$(n+1)$-generated and that A has the direct sum decomposition $A = B \oplus C$. Let p be a prime number such that p^1_B is a nilpotent of B. Then $p^n1_B = 0$.

PROOF. $B[X; Q]$ is strongly r-$(n+1)$-generated. By Lemma 15, we have $p^n1_B = 0$.

LEMMA 17. Assume that $A[X; Q]$ is strongly r-$(n+1)$-generated. Then $A[X; Q]$ has n-generator property.

PROOF. By Lemma 9 we have $\dim(A) = 0$. Then, using Lemma 16, the proof is similar with the proof of Lemma 8.

THEOREM 18. $A[X; S]$ is strongly r-$(n+1)$-generated if and only if $A[X; S]$ has n-generator property.

PROOF. The necessity: Set $q(S) = G$. By Lemma 11 we may assume that S is isomorphic either with a subsemigroup of Q_0 or with a subgroup of Q. The first case: By Lemma 14 we see that $A[X; S]$ has n-generator property. The second case: By Lemma 10, $A[X; Q]$ is strongly r-$(n+1)$-generated. By Lemma 17, $A[X; Q]$ has n-generator property. By Lemma 6, $A[X; S]$ has n-generator property.

COROLLARY 19. $A[X; S]$ is strongly $(n+1)$-generated if and only if $A[X; S]$ has n-generator property.

APPENDIX [10] and [8] consider minimal overrings of a Noetherian domain.

PROPOSITION 20. Let A be a ring (not necessarily neither noetherian nor integral). Then there exists an extension ring B of A such that:

1. $B \supsetneq A$.

2. If $C \supset A$ is a subring of B, then $C = B$ or $C = A$.

PROOF. Let M be a maximal ideal of A. Let I be an ideal of $A[X]$ generated by the set $\{X^2, mX \mid m \in M\}$. There exists a natural injection of A into $A[X]/I$. Therefore there exists an extension ring B of A such that $B \supsetneq A$, $B = A[x]$, $x^2 = 0$ and $mx = 0$ for each $m \in M$. B/M is a 2-dimensional vector space over A/M. Let C be an intermediate ring of $B \supset A$. Then C/M is a subspace of B/M. If C/M is 2-dimensional, then $C = B$. If C/M is 1-dimensional, then $C = A$.

Let $\{p_i\}_{i=1}^{\infty}$ be the set of positive prime numbers, and x, y are indeterminates over the rational integers Z. Let $\Pi(D)$ denote the set of prime ideals of D which are minimal over some ideal $(a) :_D (b)$ for $a, b \in D$. In [2] we proved that the ring $R = \mathbb{Z}\{x/p_i, y/p_i\}_{i=1}^{\infty}$ resolves all the following questions/conjectures:

(1) Conjecture [9]. If D is an almost Krull domain and each height one prime ideal of D is divisorial, then D is a Krull domain.

(2) Question [5]. If D_P is a valuation ring for each $P \in \Pi(D)$, is $D[X]_U$ a Prüfer ring?
(3) Conjecture[4]. There exists an essential ring which is not a Prüfer v-multiplication ring.

(4) Question[6]. Is every almost Krull domain a Prüfer v-multiplication ring?

In a letter to the author, Professor Houston wrote, "In [2], are the terms with "y" necessary? That is, would \(R = \mathbb{Z}[x/p_i] \) not work also?"

Proposition 21. Let \(x_1, \ldots, x_n \) be indeterminates over \(\mathbb{Z} \), where \(n \) is any integer \(\geq 1 \). Then \(\mathbb{Z}[x_1/p_i, x_2/p_i, \ldots, x_n/p_i, p_i^\infty] \) resolves all the above four questions/conjectures.

The proof is similar with that of [2].

References

