<table>
<thead>
<tr>
<th>Title</th>
<th>On p-adic L-functions attached to elliptic curves with complex multiplication and the Riemann-Hurwitz genus formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>AIBA, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 22: 23-28</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3014</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On p-adic L-functions attached to elliptic curves with complex multiplication and the Riemann-Hurwitz genus formula

AKIRA AIBA*

§0. Introduction

Let K be a quadratic imaginary field and let p be a prime number which splits in K, say $(p) = p^2$. Let K_{∞} be the unique \mathbb{Z}_p-extension of K unramified outside p. Let F be an abelian extension of K of order prime to p and $F_{\infty} = FK_{\infty}$. Let M_{∞} be the maximal abelian \mathbb{Z}_p-extension of F_{∞} unramified outside p. Write X_{∞} for the Galois group of M_{∞} over F_{∞}, endowed with its natural action of the Galois group $Gal(F_{\infty}/K)$. Let $\Gamma = Gal(F_{\infty}/F)$. It is well known that X_{∞} is a finitely generated $\mathbb{Z}_p[\Gamma]$-torsion $\mathbb{Z}_p[\Gamma]$-module.

§1. Notations

Let K be an imaginary quadratic field with the integer ring \mathcal{O}. Let p be a rational prime which splits in K, say $(p) = p^2$. Let K_{∞} be the unique \mathbb{Z}_p-extension of K unramified outside p and let K_n ($n = 0, 1, \ldots$) be the unique subfield of K_{∞} such that $[K_n : K] = p^n$. Let F be an abelian extension of K of order prime to p. Let $F_n = FK_n$ and $F_{\infty} = FK_{\infty}$. Let $\Gamma = Gal(F_{\infty}/F)$ be the Galois group of F_{∞} over F. Let $M_{\infty,F}$ be the maximal p-extension of F_{∞} unramified outside p. Write $X_{\infty,F} = Gal(M_{\infty,F}/F_{\infty})$, endowed with its natural action of $Gal(F_{\infty}/K)$. Let f be an integral ideal of K and let $K(f)$ be the ray class field mod f of K. Let $K(fp) = \bigcup_n K(fp^n)$ and $G(f) = Gal(K(fp)/K)$. Let χ be a finite order character from $Gal(F_{\infty}/K)$ to \mathbb{C}^\times. Fix a homomorphism

$$\kappa : Gal(F_{\infty}/K) \simeq Gal(F_{\infty}/K_{\infty}) \times Gal(K_{\infty}/K) \rightarrow Gal(K_{\infty}/K) \simeq (1 + p\mathbb{Z}_p) \quad if \quad p \neq 2$$

$$\simeq (1 + 4\mathbb{Z}_p) \quad if \quad p = 2$$

Received March 27, 1990.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
Suppose that \(f \) divides non \(p \)-part of the conductor of \(\chi \). We may assume that \(F \) is contained in \(K(\chi) \). Let \(E \) be an elliptic curve defined over \(K(\chi) \) with fixed Weierstrass model, satisfying the following two conditions. (1) \(E \) has complex multiplication by \(\mathfrak{a} \) with \(\text{grössencharacter} \ \psi \). Thus \(\psi \) is a homomorphism from the group of all fractional ideal of \(K(\chi) \) relatively prime to some ideal into \(\mathbb{Q} \).

(2) \(\psi(\mathfrak{a}) = \kappa(\mathfrak{a}N_{K(\chi)/K}^{\mathfrak{a}}) \) where \(\mathfrak{a} \) is an ideal relatively prime to \(pf \) and \(\mathfrak{a} = (a, F_{\infty}/K) \) is the Artin symbol of \(a \). Let \(L \) be the period lattice of \(E \). Replacing \(E \) by one of its conjugates, if necessary, we assume

\[
L = \Omega_f, \quad \Omega \in \mathbb{C}^\times
\]

Let \(\Omega_p \) be a \(p \)-adic period of \(E \). (See [1]) Let

\[
L_{\infty, f}(\chi \kappa^{-k}, s) = \frac{(s + k)}{(2\pi)^{s+k}} \sum_{(a, f) = 1} \frac{\chi \kappa^{-k}(\mathfrak{a})}{Na^s}
\]

where \(\mathfrak{a} = (a, F_{\infty}/K) \) be the Artin symbol of \(a \) and \(\Gamma(s) \) be the gamma function.

We follow the notation of [1] in reviewing the construction of the \(p \)-adic \(L \)-function \(L_{p, f}(\chi, s) \),

\[
\Omega_p^k L_{p, f}(\chi, k) = \Omega_p^k G(\chi \kappa^{-1})(1 - (\chi^{-1} \kappa^k(\mathfrak{a})) / \mathfrak{p}) L_{\infty, f}(\chi \kappa^{-k}, 0)
\]

\(1 \leq k \in \mathbb{Z} \)

Here \(G(\chi \kappa^{-k}) \) is defined as follows. Let

\[
S = \{ \gamma \in \text{Gal}(K(\mathfrak{p}^n p^{\infty})/K) | \gamma|_{\text{Gal}(K(\mathfrak{p}^n)/K)} = (\mathfrak{p}^n, K(F_{\infty}/K)) \}
\]

where \(n \) is the exact power of \(p \) dividing the conductor of \(\chi \kappa^{-k} \) and \(\zeta_n \) is a primitive \(p \)-th root of unity. Then

\[
G(\chi \kappa^{-1}) = \frac{\kappa(\mathfrak{p}^n)}{p^n} \sum_{\gamma \in S} \chi(\gamma)(\zeta_n)^{-1}
\]

It is known that there exists a measure \(\mu_f \) on \(G(\chi) \) such that

\[
L_{p, f}(\chi, s) = \int_{G(\chi)} \chi^{-1} \kappa^*(\sigma) d\mu_f
\]

and a power series \(G_{p, f}(\chi, T) = \int_{G(\chi)} \chi^{-1}(\sigma)(1 + T)^{\kappa(\sigma)} d\mu_f \) such that

\[
L_{p, f}(\chi, s) = G_{p, f}(\chi; u^s - 1)
\]

where \(u = \kappa(\gamma_0) \) and \(\gamma_0 \) is a generator of \(\text{Gal}(K_{\infty}/K) \cong \text{Gal}(F_{\infty}/F) \). Let \(\mathfrak{o}' \) be the ring of integers in a finite extension of \(\mathbb{Q}_p \). Let \(f(T) = a_0 + a_1 T + a_2 T^2 + \ldots \in \Lambda = \mathfrak{o}'[[T]] \) be a non zero power series with coefficients in \(\mathfrak{o}' \). Let \(\mu(f) = \min\{\text{ord}_p a_i : i \geq 0\} \) be the \(\mu \)-invariant of \(f \) and \(\lambda(f) = \min\{i \geq 0 : \text{ord}_p a_i = \mu(f)\} \) be the \(\lambda \)-invariant of \(f \).
Two \(\Lambda \)-modules are said to be pseudo-isomorphic if there is a map between them with finite kernel and cokernel. Any finitely generated torsion \(\Lambda \)-module \(Y \) is pseudo-isomorphic to a module of the form \(\bigoplus \Lambda / f_i \Lambda \) for certain \(f_i \in \Lambda \), and the characteristic power series \((\prod f_i) \) is a well-defined invariant of \(Y \) which we will denote by \(\text{char}(Y) \). It is well known that \(X_{\infty,F} \) is a finitely generated torsion \(\Lambda \)-module, with the action \(T x = (\gamma_0 - 1)x \). Let \(\mu_F = \mu(\text{char}(X_{\infty,F})) \) and let \(\lambda_F = \lambda(\text{char}(X_{\infty,F})) \). Let \(\mu_\chi(\chi) = \mu(G_{p,\chi}(\chi,T)) \) and let \(\lambda_\chi(\chi) = \lambda(G_{p,\chi}(\chi,T)) \).

If \(f \) is the non \(p \)-part of the conductor \(\chi \), we omit the subscript \(f \) from our notations: thus \(L_p(\chi,s) \), \(G_p(\chi,s) \), \(\mu(\chi) \), \(\lambda(\chi) \). If \(G \) is a group \(G \) denotes the character group of \(G \).

§2.

We use the next two important lemmas.

Lemma 1.

\[\mu_F = 0 \]

The next lemma is a link between \(\mathbb{Z}_p \)-extension and \(L \)-function.

Lemma 2.

\[
\mu_F = \sum_{\alpha \in \text{Gal}(F_\infty/K_\infty)} \mu(\chi) \\
\lambda_F = \sum_{\chi \in \text{Gal}(F_\infty/K_\infty)} \lambda(\chi) + 1
\]

Proof. See de Shalit [1]

The next lemma gives some information on \(\lambda_\chi(\chi) \) when \(f \) is varied.

Lemma 3. Let \(\chi \) be a finite order character of \(\text{Gal}(F/K) \). Let \(f \) and \(f' \) be integral ideals of \(K \) which are divisible by the non-\(p \)-part of the conductor of \(\chi \), and suppose that \(f \) is divisible by \(f' \). Then

\[\lambda_{f'}(\chi) = \lambda_f(\chi) + \sum g(q) \]

where the summation is taken over primes \(q \) which divides \(f'f^{-1} \) in \(K \) such that \(\chi(\sigma_q) \) has \(p \)-power order and \(g(q) \) denotes the number of places of \(K_\infty \) lying above \(q \).

Proof. Define a \(p \)-adic integer \(t(q) \) by \(\sigma_q \equiv \gamma_0^{\gamma_0^{t(q)}} \mod \text{Gal}(F/K) \) where \(\gamma_0 \) is a generator of \(\text{Gal}(K_\infty/K) \). Write

\[-t(q) = p^a u \quad a \geq 0, \quad u \in \mathbb{Z}_p^\times. \]
From the definition,

\[L_{p,t'}(\chi, s) = L_{p,t}(\chi, s) \prod (1 - \chi q^{-s}(q)) \]

\[G_{p,t'}(\chi, T) = G_{p,t}(\chi, T) \prod E_q(T) \]

where the product is taken over primes \(q \) which divide \(f'f^{-1} \) in \(K \) and

\[E_q(T) = (1 - \chi(q)(1 + T)^{-t(q)}) \]

Then

\[E_q(T) \equiv 1 - \chi(q)(1 + T^{p^a})^u \mod p \sigma'(T) \]

\[\equiv 1 - \chi(q) - \chi(q)uT^{p^a} \mod (p, T^{p^a+1} \sigma'(T)) \]

It follows that

\[\mu(E_q(T)) = 0 \]

\[\lambda(E_q(T)) = p \text{ if } \chi(q) \text{ is a } p \text{-power root of unity} \]

\[= 0 \text{ otherwise} \]

Let \(D_q \) (resp. \(I_q \)) be the decomposition (resp. inertia) group of \(q \) for the extension \(K_{\infty}/K \). Then \(D_q/I_q \) is generated by

\[\gamma_0 \mod \text{Gal}(F/K) \]

It follows that \(g(q) \) is finite and equal to \(p^a \)

q.e.d.

The next lemma gives some information on \(\lambda_f(\chi) \) when \(\chi \) is varied.

Lemma 4. Let \(\chi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) and let \(\psi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) of \(p \)-power order. Then

\[\lambda_f(\chi) = \lambda_f(\chi \psi) \]

Proof. Let \(o_{\chi,\psi} \) be the ring of integers in a finite extension of \(\mathbb{Q}_p \) containing the values of both \(\chi \) and \(\psi \) and let \(\pi \) be a local parameter in \(o_{\chi,\psi} \).

Then since \(\psi \) has a \(p \)-power order,

\[G_{p,f}(\chi \psi, T) - G_{p,f}(\chi, T) = \int (\psi^{-1}(\sigma) - 1)\chi^{-1}(\sigma)(1 + T)^{\kappa(\sigma)} d\mu_f \in \pi o_{\chi,\psi}[[T]] \]

Since \(\mu_f(\chi) = \mu_f(\chi \psi) = 0 \), the result is obtained.

q.e.d.

Lemma 5. Let \(\chi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) and let \(\psi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) of \(p \)-power order. Suppose that the order
of χ be prime to p. Let L be the extension of K corresponding to χ and let $L_\infty = LK_\infty$. Then

$$\lambda(\chi\psi) = \lambda(\chi) + N$$

where N is the number of places v on K_∞ such that (1) v doesn't lie above p and $v|_K$ is ramified for ψ. (2) v splits completely in L_∞.

Proof. Let f (resp. f') be the non p-part of the conductor of χ (resp. $\chi\psi$). Since χ and ψ have relatively prime orders, f' is divisible by f. By Lemma 3 and Lemma 4,

$$\lambda(\chi\psi) = \lambda_{f'}(\chi\psi) = \lambda_f(\chi) = \lambda(\chi) + M$$

where $M = \sum g(q)$, the summation taken over places q, which divides $f'f^{-1}$ for which $\chi(\sigma_q)$ has p-power.

Since χ has order prime to p, $\chi(\sigma_q)$ is p-power order if and only if $\chi(\sigma_q) = 1$, that is q splits completely in L. Then from the definition of $g(q)$, M is the number of places v on K_∞ which split completely in L_∞ and $v|_K = q$ is prime number which divides $f'f^{-1}$. Such v satisfy (1) and (2). Conversely in L and from the condition that order of χ is prime to order of ψ, $v|_K$ divides $f'f^{-1}$ q.e.d.

The next result is the main theorem.

Theorem 6. Notations are as usual as in §1. Let $H \supset F \supset K$ be a tower of abelian extensions such that $\text{Gal}(H/F)$ is p-power order and the order of $\text{Gal}(F/K)$ is prime to p. Let λ_F and λ_H be the λ-invariant of $X_{\infty,F}$ and $X_{\infty,H}$, respectively. Then

$$\lambda_H - 1 = [H_\infty : F_\infty](\lambda_F - 1) + \sum_w (e(w/v) - 1)$$

where the summation is taken over all places w on H_∞ which don't lie above p and $v = w|_{F_\infty}$ and $e(w/v)$ denotes the ramification index of w over v.

Proof. If $H \cap F_\infty$ doesn't contain F, take the subfield H'' of H containing F such that $H'' \cap F_\infty = F$, $H''_{\infty} = H_\infty$ and we may assume $H \cap F_\infty = F$.

We prove only the case when $[H : F] = p$ and $[F : K] = q$ (p, q: prime numbers of $p \neq q$). The other cases are the same way to prove.

Define H' the subfield of H such that $H \cong H' \times F$. We have a factorization

$$\prod_{\theta \in \text{Gal}(H/K)} L_p(\theta, s) = \prod_{\psi \in \text{Gal}(H'/K)} \prod_{\chi \in \text{Gal}(F/K)} L_p(\chi\psi, s)$$

and

$$G_p(\theta, T) = \prod \prod G_p(\chi\psi, T)$$

then

$$\sum \lambda(\theta) = \sum \sum \lambda(\chi\psi)$$

Let N be the number of places v of K_∞ such that (1) v doesn't lie above p and $v|_K$ is ramified for ψ, where ψ denotes a non-trivial character of $\text{Gal}(H'/K)$.

Let N' be the number of places v of K such that (1) and (2) v splits completely in F. Then from the lemmas,

$$\sum_{\theta \in \text{Gal}(H/K)} \lambda(\theta) = \sum_{1 \neq \chi \in \text{Gal}(F/K)} (p\lambda(\chi) + (p - 1)N') + p\lambda(1) + (p - 1)N$$

$$= p \sum_{\chi \in \text{Gal}(F/K)} \lambda(\chi) + (p - 1)((q - 1)N' + N)$$

$$= p \sum_{\omega} \lambda(\chi) + \sum_{\omega} (e(w/v) - 1)$$

where the second summation is taken over the places w of H_∞ which don't lie above p. From Lemma 2, we obtain the result. q.e.d.

References