このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術情報リポジトリ
茨城大学学術情報リポジトリ

ROSEリポジトリいばらき（茨城大学学術情報リポジトリ）

Title
On p-adic L-functions attached to elliptic curves with complex multiplication and the Riemann-Hurwitz genus formula

Author(s)
AIBA, Akira

Citation
Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 22: 23-28

Issue Date
1990

URL
http://hdl.handle.net/10109/3014

Rights
このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On p-adic L-functions attached to elliptic curves with complex multiplication and the Riemann-Hurwitz genus formula

AKIRA AIBA*

§0. Introduction

Let K be a quadratic imaginary field and let p be a prime number which splits in K, say $(p) = p\overline{p}$. Let K_∞ be the unique \mathbb{Z}_p-extension of K unramified outside p. Let F be an abelian extension of K of prime to p and $F_\infty = FK_\infty$. Let M_∞ be the maximal abelian \mathbb{Z}_p-extension of F_∞ unramified outside p. Write X_∞ for the Galois group of M_∞ over F_∞, endowed with its natural action of the Galois group $Gal(F_\infty/K)$. Let $\Gamma = Gal(F_\infty/F)$. It is well known that X_∞ is a finitely generated $\mathbb{Z}_p[\Gamma]$-torsion $\mathbb{Z}_p[\Gamma]$-module.

§1. Notations

Let K be an imaginary quadratic field with the integer ring \mathcal{O}. Let p be a rational prime which splits in K, say $(p) = p\overline{p}$. Let K_∞ be the unique \mathbb{Z}_p-extension of K unramified outside p and let K_n $(n = 0, 1, \ldots)$ be the unique subfield of K_∞ such that $[K_n : K] = p^n$. Let F be an abelian extension of K of prime to p. Let $F_n = FK_n$ and $F_\infty = FK_\infty$. Let $\Gamma = Gal(F_\infty/F)$ be the Galois group of F_∞ over F. Let $M_{\infty,F}$ be the maximal p-extension of F_∞ unramified outside p. Write $X_{\infty,F} = Gal(M_{\infty,F}/F_\infty)$, endowed with its natural action of $Gal(F_\infty/K)$. Let \mathfrak{f} be an integral ideal of K and let $K(\mathfrak{f})$ be the ray class field mod \mathfrak{f} of K. Let $K(\mathfrak{p}^\infty) = \bigcup_n K(\mathfrak{p}^n)$ and $G(\mathfrak{f}) = Gal(K(\mathfrak{p}^\infty)/K)$. Let χ be a finite order character from $Gal(F_\infty/K)$ to \mathbb{C}_p^\times. Fix a homomorphism

$$\kappa : Gal(F_\infty/K) \simeq Gal(F_\infty/K_\infty) \times Gal(K_\infty/K) \to Gal(K_\infty/K) \simeq (1 + p\mathbb{Z}_p) \quad \text{if} \quad p \neq 2$$

$$\simeq (1 + 4\mathbb{Z}_p) \quad \text{if} \quad p = 2$$

Received March 27, 1990.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
Suppose that f divides non p-part of the conductor of χ. We may assume that F is contained in $K(f)$. Let E be an elliptic curve defined over $K(f)$ with fixed Weierstrass model, satisfying the following two conditions. (1) E has complex multiplication by \mathfrak{o} with gr"ossencharacter ψ. Thus ψ is a homomorphism from the group of all fractional ideal of $K(f)$ relatively prime to some ideal into \mathbb{Q}. (2) $\psi(\mathfrak{a}) = \kappa(\sigma_{\mathcal{N}_K(f)/\mathfrak{a}})$ where \mathfrak{a} is an ideal relatively prime to pf and $\sigma_{\mathfrak{a}} = (a, F_{\infty}/K)$ is the Artin symbol of a. Let L be the period lattice of E. Replacing E by one of its conjugates, if necessary, we assume

$$L = \Omega f, \quad \Omega \in \mathbb{C}^\times$$

Let Ω_p be a p-adic period of E. (See [1]) Let

$$L_{\infty, f}(\chi \kappa^{-k}, s) = \frac{(s + k)(2\pi)^{s+k}}{\Gamma(s+k)} \sum_{(a,f)=1} \frac{\chi \kappa^{-k}(\sigma_a)}{Na^s}$$

where $\sigma_a = (a, F_{\infty}/K)$ be the Artin symbol of a and $\Gamma(s)$ be the gamma function.

We follow the notation of [1] in reviewing the construction of the p-adic L-function $L_{p,f}(\chi, s)$,

$$\Omega_p L_{p,f}(\chi, k) = \Omega L(p, G(\chi \kappa^{-1}))(1 - (\chi^{-1} \kappa^k(\sigma_a)))/p)L_{\infty, f}(\chi \kappa^{-k}, 0) \quad 1 \leq k \in \mathbb{Z}$$

Here $G(\chi \kappa^{-k})$ is defined as follows. Let

$$S = \{ \gamma \in \text{Gal}(K(f^p\bar{p}^\infty)/K) \mid \gamma|_{\text{Gal}(K(f^p\bar{p}^\infty)/K)} = (p^n, K((\bar{p}^\infty)/K) \}

where n is the exact power of p dividing the conductor of $\chi \kappa^{-k}$ and ζ_n is a primitive p-th root of unity. Then

$$G(\chi \kappa^{-1}) = \frac{\kappa(p^n)}{p^n} \sum_{\gamma \in S} \chi(\gamma)(\zeta_n)^{-1}$$

It is known that there exists a measure μ_f on $G(f)$ such that

$$L_{p,f}(\chi, s) = \int_{G(f)} \chi^{-1} \kappa^s(\sigma)d\mu_f$$

and a power series $G_{p,f}(\chi, T) = \int_{G(f)} \chi^{-1}(\sigma)(1 + T)^{\kappa(\sigma)}d\mu_f$ such that

$$L_{p,f}(\chi, s) = G_{p,f}(\chi; u^s - 1)$$

where $u = \kappa(\gamma_0)$ and γ_0 is a generator of $\text{Gal}(K_{\infty}/K) \simeq \text{Gal}(F_{\infty}/F)$. Let \mathfrak{o}' be the ring of integers in a finite extension of \mathbb{Q}_p. Let $f(T) = a_0 + a_1 T + a_2 T^2 + \ldots \in \Lambda = \mathfrak{o}'[[T]]$ be a non zero power series with coefficients in \mathfrak{o}'. Let $\mu(f) = \min\{\text{ord}_p a_i : i \geq 0\}$ be the μ-invariant of f and $\lambda(f) = \min\{i \geq 0 : \text{ord}_p a_i = \mu(f)\}$ be the λ-invariant of f.

Two Λ-modules are said to be pseudo-isomorphic if there is a map between them with finite kernel and cokernel. Any finitely generated torsion Λ-module Y is pseudo-isomorphic to a module of the form $\bigoplus \Lambda/f_i\Lambda$ for certain $f_i \in \Lambda$, and the characteristic power series $(\prod f_i)$ is a well-defined invariant of Y which we will denote by $\text{char}(Y)$. It is well known that $X_{\infty,F}$ is a finitely generated torsion Λ-module, with the action $T_x = (\gamma_0 - 1)x$. Let $\mu_F = \mu(\text{char}(X_{\infty,F}))$ and let $\lambda_F = \lambda(\text{char}(X_{\infty,F}))$. Let $\mu_\Gamma(\chi) = \mu(G_{p,\Gamma}(\chi,T))$ and let $\lambda_\Gamma(\chi) = \lambda(G_{p,\Gamma}(\chi,T))$.

If χ is the non p-part of the conductor χ, we omit the subscript χ from our notations: thus $L_p(\chi,s)$, $G_p(\chi,s)$, $\mu(\chi)$, $\lambda(\chi)$. If G is a group Γ denotes the character group of G.

§2.

We use the next two important lemmas.

Lemma 1.

$$\mu_F = 0$$

The next lemma is a link between \mathbb{Z}_p-extension and L-function.

Lemma 2.

$$\mu_F = \sum_{\Gamma \in \text{Gal}(F_{\infty}/K_{\infty})} \mu(\chi)$$

$$\lambda_F = \sum_{\chi \in \text{Gal}(F_{\infty}/K_{\infty})} \lambda(\chi) + 1$$

Proof. See de Shalit [1]

The next lemma gives some information on $\lambda_\Gamma(\chi)$ when χ is varied.

Lemma 3. Let χ be a finite order character of $\text{Gal}(F/K)$. Let χ and χ' be integral ideals of K which are divisible by the non-p-part of the conductor of χ, and suppose that χ is divisible by χ'. Then

$$\lambda_{\chi'}(\chi) = \lambda_{\chi}(\chi) + \sum g(q)$$

where the summation is taken over primes q which divides $\chi'\chi^{-1}$ in K such that $\chi(\sigma_q)$ has p-power order and $g(q)$ denotes the number of places of K_{∞} lying above q.

Proof. Define a p-adic integer $t(q)$ by $\sigma_q \equiv \gamma_0 t(q) \mod \text{Gal}(F/K)$ where γ_0 is a generator of $\text{Gal}(K_{\infty}/K)$. Write

$$-t(q) = p^a u \quad a \geq 0, \quad u \in \mathbb{Z}_p^\times.$$
From the definition,
\[L_{p,f}(\chi, s) = L_{p,f}(\chi, s) \prod (1 - \chi^{q^{-s}}(q)) \]

\[G_{p,f}(\chi, T) = G_{p,f}(\chi, T) \prod E_q(T) \]

where the product is taken over primes \(q \) which divide \(f'f^{-1} \) in \(K \) and

\[E_q(T) = (1 - \chi(\sigma_q)(1 + T)^{-t(q)}) \]

Then

\[E_q(T) \equiv 1 - \chi(\sigma_q)(1 + T^{p^u}) \mod p \sigma'[[T]] \]

\[\equiv 1 - \chi(\sigma_q) - \chi(\sigma_q)uT^{p^u} \mod (p, T^{p^u+1}\sigma'[[T]]) \]

It follows that

\[\mu(E_q(T)) = 0 \]

\[\lambda(E_q(T)) = p \text{ if } \chi(\sigma_q) \text{ is a } p \text{- power root of unity} \]

\[= 0 \text{ otherwise} \]

Let \(D_q \) (resp. \(I_q \)) be the decomposition (resp. inertia) group of \(q \) for the extension \(K_{\infty}/K \). Then \(D_q/I_q \) is generated by

\[\gamma_0 \mod \text{ Gal}(F/K) \]

It follows that \(g(q) \) is finite and equal to \(p^a \)

q.e.d.

The next lemma gives some information on \(\lambda_f(\chi) \) when \(\chi \) is varied.

Lemma 4. Let \(\chi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) and let \(\psi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) of \(p \)-power order. Then

\[\lambda_f(\chi) = \lambda_f(\chi \psi) \]

Proof. Let \(o_{\chi, \psi} \) be the ring of integers in a finite extension of \(Q_p \) containing the values of both \(\chi \) and \(\psi \) and let \(\pi \) be a local parameter in \(o_{\chi, \psi} \)

Then since \(\psi \) has a \(p \)-power order,

\[G_{p,f}(\chi \psi, T) - G_{p,f}(\chi, T) = \int (\psi^{-1}(\sigma) - 1)\chi^{-1}(\sigma)(1 + T)^{\kappa(\sigma)}d\mu_f \in \pi o_{\chi, \psi}[[T]] \]

Since \(\mu_f(\chi) = \mu_f(\chi \psi) = 0 \), the result is obtained.

q.e.d.

Lemma 5. Let \(\chi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) and let \(\psi \) be a finite order character of \(\text{Gal}(F_{\infty}/K) \) of \(p \)-power order. Suppose that the order
of \(\chi \) be prime to \(p \). Let \(L \) be the extension of \(K \) corresponding to \(\chi \) and let
\[
L_{\infty} = L K_{\infty}.
\]
Then
\[
\lambda(\chi \psi) = \lambda(\chi) + N
\]
where \(N \) is the number of places \(v \) on \(K_{\infty} \) such that (1) \(v \) doesn't lie above \(p \) and \(v | K \) is ramified for \(\psi \), (2) \(v \) splits completely in \(L_{\infty} \).

Proof. Let \(f \) (resp. \(f' \)) be the non \(p \)-part of the conductor of \(\chi \) (resp. \(\chi \psi \)). Since \(\chi \) and \(\psi \) have relatively prime orders, \(f' \) is divisible by \(f \). By Lemma 3 and Lemma 4,
\[
\lambda(\chi \psi) = \lambda_r(\chi \psi) + \lambda_f(\chi) = \lambda(\chi) + M
\]
where \(M = \sum g(q) \), the summation taken over places \(q \), which divides \(f'f^{-1} \) for which \(\chi(\sigma_q) \) has \(p \)-power.

Since \(\chi \) has order prime to \(p \), \(\chi(\sigma_q) \) is \(p \)-power order if and only if \(\chi(\sigma_q) = 1 \), that is \(q \) splits completely in \(L \). Then from the definition of \(g(q) \), \(M \) is the number of places \(v \) on \(K_{\infty} \) which split completely in \(L_{\infty} \) and \(v | K = q \) is prime number which divides \(f'f^{-1} \). Such \(v \) satisfy (1) and (2). Conversely in \(L \) and from the condition that order of \(\chi \) is prime to order of \(\psi \), \(v | K \) divides \(f'f^{-1} \) q.e.d.

The next result is the main theorem.

Theorem 6. Notations are as usual as in §1. Let \(H \supset F \supset K \) be a tower of abelian extensions such that \(\text{Gal}(H/F) \) is \(p \)-power order and the order of \(\text{Gal}(F/K) \) is prime to \(p \). Let \(\lambda_F \) and \(\lambda_H \) be the \(\lambda \)-invariant of \(X_{\infty,F} \) and \(X_{\infty,H} \), respectively. Then
\[
\lambda_H - 1 = [H_{\infty} : F_{\infty}](\lambda_F - 1) + \sum_w (e(w/v) - 1)
\]
where the summation is taken over all places \(w \) on \(H_{\infty} \) which don't lie above \(p \) and \(v = w | F_{\infty} \) and \(e(w/v) \) denotes the ramification index of \(w \) over \(v \).

Proof. If \(H \cap F_{\infty} \) doesn't contain \(F \), take the subfield \(H'' \) of \(H \) containing \(F \) such that \(H'' \cap F_{\infty} = F \), \(H''_{\infty} = H_{\infty} \) and we may assume \(H \cap F_{\infty} = F \).

We prove only the case when \([H : F] = p \) and \([F : K] = q \) (\(p \), \(q \): prime numbers of \(p \neq q \)). The other cases are the same way to prove.

Define \(H' \) the subfield of \(H \) such that \(H \cong H' \times F \). We have a factorization
\[
\prod_{\theta \in \text{Gal}(H/K)} L_p(\theta, s) = \prod_{\psi \in \text{Gal}(H'/K)} \prod_{\chi \in \text{Gal}(F/K)} L_p(\chi \psi, s)
\]
and
\[
G_p(\theta, T) = \prod \prod G_p(\chi \psi, T)
\]
then
\[
\sum \lambda(\theta) = \sum \sum \lambda(\chi \psi)
\]
Let \(N \) be the number of places \(v \) of \(K_{\infty} \) such that (1) \(v \) doesn't lie above \(p \) and \(v | K \) is ramified for \(\psi \), where \(\psi \) denotes a non-trivial character of \(\text{Gal}(H'/K) \).
Let N' be the number of places v of K such that (1) and (2) v splits completely in F. Then from the lemmas,

$$
\sum_{\theta \in \text{Gal}(H/K)} \lambda(\theta) = \sum_{1 \neq \chi \in \text{Gal}(F/K)} (p\lambda(\chi) + (p - 1)N') + p\lambda(1) + (p - 1)N
$$

$$
= p \sum_{\chi \in \text{Gal}(F/K)} \lambda(\chi) + (p - 1)((q - 1)N' + N)
$$

$$
= p \sum_{w} \lambda(\chi) + \sum_{w} (e(w/v) - 1)
$$

where the second summation is taken over the places w of H_{∞} which don't lie above p. From Lemma 2, we obtain the result. q.e.d.

References