<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>On the Le'vy representation of the characteristic function of the probability distribution Ce-</td>
</tr>
<tr>
<td>Author(s)</td>
<td>TAKANO, Katsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 20: 61-65</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/3004</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On the Lévy representation of the characteristic function of the probability distribution $Ce^{-|x|}dx$

KATSUO TAKANO*

1. Introduction

\mathbb{R}^d denotes d-dimensional Euclidean space. We write $x = (x_1, x_2, \ldots, x_d)$, $y = (y_1, y_2, \ldots, y_d)$ for the elements of \mathbb{R}^d. The inner product of $x, y \in \mathbb{R}^d$ is the number $xy = x_1y_1 + x_2y_2 + \cdots + x_dy_d$. Let $|x| = (x_1^2 + \cdots + x_d^2)^{1/2}$ and let $dx = dx_1dx_2\ldots dx_d$ denotes the ordinary Lebesgue measure. If μ is a probability distribution on \mathbb{R}^d we define the characteristic function ϕ by letting

$$\phi(z) = \int_{\mathbb{R}^d} e^{izx} \mu(dx), \quad z \in \mathbb{R}^d.$$

It is well known that the isotropic Cauchy distribution

$$f(x)dx = \pi^{-(d+1)/2}\Gamma\left(\frac{d+1}{2}\right)(1+|x|^2)^{-(d+1)/2}dx \quad (1.1)$$

has the characteristic function

$$\phi(z) = \int_{\mathbb{R}^d} e^{izx} f(x)dx = e^{-|z|} \quad (1.2)$$

and is a stable distribution of index 1. The constant number C is chosen such that

$$\int_{\mathbb{R}^d} Ce^{-|x|}dx = 1. \quad (1.3)$$

The purpose of this note is to obtain the Lévy representation of the characteristic function of the probability distribution $Ce^{-|x|}dx$. For the case $d = 1$, the Lévy representation of the characteristic function of the probability distribution $\frac{1}{2}e^{-|x|}dx$ is known; that is

$$\phi(z) = \exp\left[\int_{-\infty}^{\infty} (e^{izx} - 1) \frac{1}{|x|}e^{-|x|}dx\right].$$

From this we obtain the following representation;

$$\phi(z) = \exp\left[\int_0^{\infty} 2e^{-v}dv \left(\frac{1}{2} \int_0^{v} (e^{izu} - 1) \frac{du}{u} + \frac{1}{2} \int_0^{v} (e^{-izu} - 1) \frac{du}{u}\right)\right]$$

(cf. [9, Th.3.6]).

Received 11, April 1988.

* College of general education, Ibaraki University, Mito, Ibaraki.
2. On the Lévy representation

Let \(d = 2, 3, \ldots \) We shall make use of the polar coordinates;

\[
\begin{align*}
x_1 &= r \cos \theta_1, \quad 0 \leq \theta_1 \leq \pi, \\
x_2 &= r \sin \theta_1 \cos \theta_2, \quad 0 \leq \theta_2 \leq \pi, \\
\vdots
\end{align*}
\]

\[
\begin{align*}
x_{d-1} &= r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{d-2} \cos \theta_{d-1}, \quad 0 \leq \theta_{d-2} \leq \pi, \\
x_d &= r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{d-2} \sin \theta_{d-1}, \quad 0 \leq \theta_{d-1} \leq 2\pi,
\end{align*}
\]

and \(dx = r^{d-1} dr d\xi, \)

\[
d\xi = \sin^{d-2} \theta_1 \sin^{d-3} \theta_2 \cdots \sin \theta_{d-2} d\theta_1 d\theta_2 \cdots d\theta_{d-1}.
\]

From (1.3) we have

\[
\frac{1}{C} = \int_0^\infty e^{-r} r^{d-1} dr \int_{S^{d-1}} d\xi = \frac{\Gamma(d) 2\pi^{d/2}}{\Gamma(d/2)},
\]

where \(S^{d-1} \) denotes the \(d - 1 \) dimensional sphere. For simplicity, set

\[
D = \int_{S^{d-1}} d\xi = \frac{2\pi^{d/2}}{\Gamma(d/2)}, \quad E = 2^{(d-2)/2} \pi^{1/2} \Gamma\left(\frac{d-1}{2}\right),
\]

\[
F = \int_0^\pi \sin^{d-2} \theta d\theta = \Gamma\left(\frac{d-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \left(\Gamma\left(\frac{d}{2}\right)\right)^{-1},
\]

and

\[
L(u) = \frac{(d+1)F}{DE} u^{d/2} K_{d/2}(u) = (2\pi)^{-d/2} (d+1) u^{d/2} K_{d/2}(u),
\]

where \(K_{d/2}(u) \) denotes the modified Bessel function.

RESULT 1. The Lévy representation of the characteristic function of the probability distribution \(Ce^{-|x|} dx \) is as follows;

\[
\phi(z) = \exp \left[\int_{\mathbb{R}^d} (e^{izx} - 1) L(|x|) |x|^d \, dx \right]. \tag{2.1}
\]

PROOF. By the formula

\[
K_{\nu}(v) = \left(\frac{\pi}{2v}\right)^{\frac{1}{2}} \frac{e^{-v}}{\Gamma(\nu + 1/2)} \int_0^\infty e^{-w} w^{\nu-1/2} (1 + \frac{w}{2v})^{\nu-1/2} dw \tag{2.2}
\]

(cf. [11. p. 206]), we see that

\[
\int_{\mathbb{R}^d} \frac{|x|}{1 + |x|} L(|x|) \, dx = \int_{S^{d-1}} d\xi \int_0^\infty \frac{r}{1 + r} \frac{L(r)}{r} r^{d-1} \, dr = D \int_0^\infty \frac{1}{1 + r} L(r) \, dr < \infty.
\]
This shows that the measure
\[\frac{L(|x|)}{|x|^d} \, dx \]
on \(\mathbb{R}^d \) is the Lévy measure and hence (2.1) is a characteristic function of an infinitely divisible distribution. Making use of the polar coordinates, we obtain from (2.1) that

\[\phi(z) = \exp \left[\int_{S^{d-1}} d\xi \int_0^\infty (e^{iu\xi z} - 1) \frac{L(u)}{u} \, du \right]. \quad (2.3) \]

If we take \(\cos \theta_1 \) as the projection of the vector \(\xi \) to the vector \(z \), from (2.3) and by the Fubini theorem we obtain

\[\log \phi(z) = \frac{D}{F} \int_0^\pi \sin^{d-2} \theta_1 \, d\theta_1 \int_0^\infty (e^{iu|z|\cos \theta_1} - 1) \frac{L(u)}{u} \, du \]

\[= \frac{D}{F} \int_0^\infty \left[\int_0^\pi \sin^{d-2} \theta_1 \, d\theta_1 \right] \frac{L(u)}{u} \, du. \quad (2.4) \]

By using the Bessel function \(J_{(d-2)/2}(r) \) and by the fact that

\[F = \lim_{\epsilon \to 0} E \, e^{(2-d)/2} J_{(d-2)/2}(\epsilon), \]

we have

\[\log \phi(z) = \frac{D}{F} \int_0^\infty \left[E(u|z|^{(2-d)/2} J_{(d-2)/2}(u|z|) - F \right] \frac{L(u)}{u} \, du. \]

By (1.1), (1.2) and by the Fourier inversion formula we see that

\[\int_{\mathbb{R}^d} e^{ix \cdot z} e^{-|z|} \, dx = C(2\pi)^d \pi^{-(d+1)/2} \Gamma\left(\frac{d+1}{2}\right) \frac{1}{(1+|z|^2)^{(d+1)/2}} \]

\[= \frac{1}{(1+|z|^2)^{(d+1)/2}}. \quad (2.5) \]

Therefore let us show that

\[\log \frac{1}{(1+r^2)^{(d+1)/2}} = \frac{D}{F} \int_0^\infty \left[E(ur)^{(2-d)/2} J_{(d-2)/2}(ur) - F \right] \frac{L(u)}{u} \, du \quad (2.6) \]

holds for all non-negative \(r \). At first, from (2.4), (2.6) holds for \(r = 0 \) and furthermore we see that both sides of (2.6) converge to 0 as \(r \to 0 \). By differentiating formally both sides of (2.6) we have

\[\frac{r}{1+r^2} = \frac{DE}{F} \int_0^\infty (ur)^{-d/2} \left[\frac{d-2}{2} J_{(d-2)/2}(ur) - ur J'_{(d-2)/2}(ur) \right] L(u) \, du \]

\[= \frac{DE}{F} \int_0^\infty (ur)^{-d/2} ur J_{d/2}(ur) L(u) \, du. \quad (2.7) \]
for \(r > 0 \). From the formula

\[
\int_0^\infty u^{1/2} K_{d/2}(ur)(ur)^{1/2} J_{d/2}(ur) \, du = \frac{r^{(d+1)/2}}{1 + r^2}
\]

(cf. [7. p. 108. 12.5]), the equality (2.7) holds for \(r > 0 \). Both sides of (2.7) are continuous on \((0, \infty)\) and the function \((ur)^{-d/2} J_{d/2}(ur)\) is bounded on \((0, \infty)\) and \(uL(u)\) is integrable on \((0, \infty)\). Hence the differentiation of the right side of (2.6) is justified. By integrating both sides of (2.7) from \(\varepsilon(> 0) \) to \(r \) and by letting \(\varepsilon \to 0 \) we see that (2.6) holds for all \(r > 0 \).

RESULT 2. The characteristic function of the probability distribution \(Ce^{-|x|} \, dx \) is also represented as follows;

\[
\phi(z) = \exp \left[\int_0^\infty \frac{(d + 1)F}{E} v^{d/2} K_{(d-2)/2}(v) \, dv \int_{S_{d-1}} \frac{d\xi}{D} \int_0^v (e^{iu\xi} - 1) \frac{du}{u} \right].
\]

PROOF. From (2.2),

\[
\frac{(d + 1)F}{D} v^{d/2} K_{(d-2)/2}(v) > 0 \quad \text{on } (0, \infty).
\]

By the Fubini theorem and by a change of the order of integration and by the relation

\[
u K_{d/2}'(u) + \frac{d}{2} K_{d/2}(u) = -uK_{d/2-1}
\]

and by the fact that

\[L(u) = \frac{(d + 1)F}{DE} \int_u^\infty v^{d/2} K_{(d-2)/2}(v) \, dv,
\]

we see that (2.8) equals (2.3).

References

