<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Remarks on minimal immersions</td>
</tr>
<tr>
<td>Author(s)</td>
<td>HATSUSE, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A,</td>
</tr>
<tr>
<td></td>
<td>Mathematics, 19: 47-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2988</td>
</tr>
<tr>
<td>Rights</td>
<td>このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。</td>
</tr>
</tbody>
</table>

お問合せ先
茨城大学学術情報リポジトリ
http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
Remarks on minimal immersions

Kohei HATSUSE*

1. Let M^n be an n-dimensional Riemannian manifold. Let $\mathcal{M}^m(c)$ be an $m(\geq 2)$-dimensional Riemannian manifold of constant sectional curvature c. A space form is an example of $\mathcal{M}^m(c)$.

Takahashi [2] and Obata [1] proved the following

THEOREM A ([2]). Let x be an isometric immersion of M^n into a space form $\mathcal{M}^m(c)$. Then x is a minimal immersion if and only if $\Delta x = -ncx$.

THEOREM B ([1]). Let M^n be compact. Then M^n is isometric with an n-sphere $S^n(c)$ if and only if there exists a non-constant differentiable function f in M^n such that $\Delta f = -ncf$ and $(R \cdot \nabla f, \nabla f) = (n-1)c(\nabla f, \nabla f)$.

In this note, we deal with some minimal immersions of M^n into $\mathcal{M}^m(c)$. We shall mean C^∞ differentiable by "differentiable".

2. Let $\mathfrak{X}(M^n)$ be the set of all differentiable vector fields on M^n. Let $X \in \mathfrak{X}(M^n)$. Then there exists a maximal open subset S_x of M^n such that $X_p \neq 0$ at each point $p \in S_x$. The closure \overline{S}_x of S_x is called the support of X. If we put

$$\mathfrak{X}_c(M^n) = \{X \in \mathfrak{X}(M^n); \overline{S}_x \text{ is compact}\},$$

then $\mathfrak{X}_c(M^n)$ is a linear subspace of $\mathfrak{X}(M^n)$. Let g be the Riemannian metric in M^n. If M^n is oricnted, then we can define an inner product (X, Y) in $\mathfrak{X}_c(M^n)$ by

$$(X, Y) = \int_M g(X, Y) dV, \quad X, Y \in \mathfrak{X}_c(M^n),$$

where dV denotes the volume element of M^n with respect to the metric g.

We denote by R the Ricci tensor field in M^n. Let $T_p M^n$ be the tangent space at $p \in M^n$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of $T_p M^n$. If we define a mapping $\mathcal{R}_p: T_p M^n \to T_p M^n$ by

$$\mathcal{R}_p(v) = \sum_{i=1}^n R_p(v, e_i) \cdot e_i, \quad v \in T_p M^n,$$

then \mathcal{R}_p is a linear mapping. The linear mapping \mathcal{R}_p is independent of choice of orthonormal basis $\{e_1, \ldots, e_n\}$. We have $\mathcal{R}(X) \in \mathfrak{X}_c(M^n)$ for $X \in \mathfrak{X}_c(M^n)$.

Received March 16, 1987. Partly supported by the Grant-in-Aid for Scientific Research (C-61540012) from the Ministry of Education.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
THEOREM 1. Let M^n be oriented. Let f be a minimal immersion of M^n into $\overline{M}^m(c)$. Then f is totally geodesic if and only if $(\mathring{R}(X), X) = (n-1)c(X, X)$ for $X \in \mathfrak{X}_c(M^n)$.

PROOF. If f is totally geodesic then $\mathring{R}(X) = (n-1)cX$ for $X \in \mathfrak{X}_c(M^n)$. Thus we have $(\mathring{R}(X), X) = (n-1)c(X, X)$.

We assume $(\mathring{R}(X), X) = (n-1)c(X, X)$ for $X \in \mathfrak{X}_c(M^n)$. Let $p \in M^n$ and U be a neighborhood of p in M^n. Then, for each $v \in T_p M^n$, we can find a differentiable vector field $X \in \mathfrak{X}_c(M^n)$ such that $\mathcal{S}_v X \subset U$ and $X_p = v$. If we choose U sufficiently small, then there exists an orthonormal frame $\{E_1, \ldots, E_n\}$ in U. We denote by \bar{g} the Riemannian metric in $\overline{M}^m(c)$ and by h the second fundamental form of f. Since f is isometric and minimal, we have

$$R(X, X) = (n-1)cg(X, X) - \sum_{i=1}^n \bar{g}(h(E_i, X), h(X, E_i))$$

in U from the equation of Gauss. It is obvious that $(\mathring{R}(X), X) = \int_M R(X, X) dV$. Therefore, we have

$$\int_M \sum_{i=1}^n \bar{g}(h(E_i, X), h(X, E_i)) dV = 0$$

and so $h_p = 0$. Since p is arbitrary, f is totally geodesic.

COROLLARY. Let M^n be compact. Let f be a minimal immersion of M^n into $\overline{M}^m(c)$. Then f is totally geodesic if and only if $(\mathring{R}(X), X) = (n-1)c(X, X)$ for $X \in \mathfrak{X}(M^n)$.

We denote by id_p the identity mapping $T_p M^n \to T_p M^n$. We have the following

THEOREM 2. Let f be a minimal immersion of M^n into $\overline{M}^m(c)$. Then f is totally geodesic if and only if $R_p = (n-1)c \cdot id_p$ at each $p \in M^n$.

PROOF. $R_p = (n-1)c \cdot id_p$ implies $R_p = (n-1)c g_p$. Therefore, if f is totally geodesic, then $R_p = (n-1)c \cdot id_p$ at each $p \in M^n$. Conversely, we have $\langle h \rangle = 0$ from the equation of Gauss, where $\langle h \rangle$ denotes the length of h. Therefore, f is totally geodesic.

References