<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Bounded Approximate Identities and Quasicentrality of Banach Modules</td>
</tr>
<tr>
<td>Author(s)</td>
<td>TAKAHASI, Sin-ei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 17: 21-24</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1985</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2970</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
Bounded Approximate Identities and Quasicentrality of Banach Modules

Sin-ei Takahasi*

1. Introduction.

In [2] we gave a new interpretation of the theorem of Doran and Wichmann which asserts that if \(A \) is a Banach algebra with bounded approximate identity and if \(A^* = A^* A + AA^* \), then \(A \) has a bounded quasicentral approximate identity which is contained in the convex hull of the original approximate identity (See [1, Theorem (29.2)]). In this note we introduce a notation of quasicentrality for two-sided Banach modules and present a similar result as in [2].

2. Results.

Throughout this note let \(A \) be a Banach algebra with bounded approximate identity \(\{ e_\lambda \} \) and \(X \) a two-sided Banach \(A \)-module. A net \(\{ u_\lambda \} \) in \(A \) is said to be quasicentral for \(X \) if \(\lim_{\lambda} \| u_\lambda x - xu_\lambda \| = 0 \) for all \(x \in X \). We now consider a necessary and sufficient condition for \(A \) to have a bounded approximate identity which is quasicentral for \(X \). To do this we are going to introduce two canonical module multiplications which make \(X^{**} \) into a two-sided Banach \(A^{**} \)-module, where \(X^{**} \) (resp. \(A^{**} \)) denotes the second dual of \(X \) (resp. \(A \)). These multiplications are defined as follows: Given \(a \in A, \phi \in A^{**}, x \in X, f \in X^* \) (the dual space of \(X \)) and \(F \in X^{**} \), define

\[
\langle x, f \star a \rangle = \langle ax, f \rangle : X^* \star A \subset X^*,
\]

\[
\langle a, F \star f \rangle = \langle f \star a, F \rangle : X^{**} \star X^* \subset A^*,
\]

\[
\langle f, \phi \star F \rangle = \langle F \star f, \phi \rangle : A^{**} \star X^{**} \subset X^{**},
\]

\[
\langle a, f \star x \rangle = \langle xa, f \rangle : X^* \star X \subset A^*,
\]

\[
\langle x, \phi \star f \rangle = \langle f \star x, \phi \rangle : A^{**} \star X^* \subset X^*,
\]

\[
\langle f, F \star \phi \rangle = \langle \phi \star f, F \rangle : X^{**} \star A^{**} \subset X^{**},
\]

\[
\langle a, x \star f \rangle = \langle ax, f \rangle : X \star X^* \subset A^*.
\]

Received February 28, 1985. Research partially supported by the Grant-in-Aid for Scientific Research C-59540065 from the Ministry of Education.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
We note that if $A=X$ then the module multiplication \ast is equal to the first Arens product in A^{**} and \ast is also equal to the second Arens product in A^{**}. Recall that $\text{supp} A$, the support of A is the weak* -limit point of $|e_a|$ in A^{**} (cf. [2]). Further given a Banach space Y, let us denote by π_Y the canonical embedding of Y into Y^{**}. In this setting we have the following

Theorem. (I) The following conditions are equivalent:

(i) $\text{supp} A$ commutes with each element of $\pi_X(X)$ under the module multiplication \ast.

(ii) $\text{supp} A$ commutes with each element of $\pi_X(X)$ under the module multiplication \ast.

(iii) A has a bounded approximate identity which is quasicentral for X and is containd in the convex hull of $|e_a|$.

(II) If $XA=AX$ and if $Y^*=(Y^* \ast A)+(A \ast Y^*)$, then (i) holds, where $AX=\{ax : a \in A, x \in X\}$, $XA=\{xa : a \in A, x \in X\}$ and $Y=AX$.

Note that by the Cohen-Hewitt's factorization theorem, Y is norm-closed and hence Y becomes a two-sided Banach A-module. The proof of the above result is essentially obtained in a way similar to that in [1], but for completeness we sketch it in the next section.

3. Proof of Results.

(I) It is straightforward that (i) and (ii) are equivalent. We now set $\Phi = \text{supp} A$ and so (i) is equivalent to the following condition:

(iv) $f \ast \Phi = \Phi \ast f$ for all $f \in X^*$.

In fact, let $x \in X$ and $f \in X^*$. Then

\[\langle f, \pi_x(x) \ast \Phi \rangle = \langle \Phi \ast f, \pi_x(x) \rangle = \langle x, \Phi \ast f \rangle. \]

Note also that $\pi_x(x) \ast f = x \ast f$, so that

\[\langle f, \Phi \ast \pi_x(x) \rangle = \langle \pi_x(x) \ast f, \Phi \rangle = \langle x \ast f, \Phi \rangle = \langle x, f \ast \Phi \rangle. \]
These equations show that (i) and (iv) are equivalent.

We next assume that (i) (and hence (iv)) holds. Let \(\epsilon > 0 \), \(a_1, \ldots, a_n \in A \) and \(x_1, \ldots, x_n \in X \). Choose an element \(\lambda_0 \) such that \(\|e_{\lambda}a_j - a_j\| < \epsilon \) and \(\|a_{\lambda}e_{\lambda} - a_{\lambda}\| < \epsilon \) for \(\lambda \geq \lambda_0 \) and \(j = 1, \ldots, n \). Let \(W \) be the norm-closure of the set

\[
\bigoplus_{j=1}^{n} \mathbb{C} x_j - x_j e : e \in E(\lambda_0)
\]

in the Banach space direct sum of \(n \)-copies of \(X \) where \(E(\lambda_0) \) is the convex hull of \(\{ e_{\lambda} : \lambda \geq \lambda_0 \} \). Then \(W \) is a closed convex set. If \(0 \notin W \), then there are \(f_1, \ldots, f_n \in X^* \) such that

\[
\sum_{j=1}^{n} \langle e_{\lambda}x_j - x_j e, f_j \rangle < 1
\]

for all \(e \in E(\lambda_0) \) from the Hahn-Banach separation theorem. However

\[
\lim_{\lambda} \langle e_{\lambda}x_j - x_j e, f_j \rangle = \lim_{\lambda} \langle e_{\lambda}, x_j * f_j - f_j * x_j \rangle = \lim_{\lambda} \langle x_j * f_j - f_j * x_j, \pi_{\lambda}(e_{\lambda}) \rangle = \langle x_j * f_j - f_j * x_j, \Phi \rangle = \langle x_j, f_j * \Phi - \Phi * f_j \rangle = 0,
\]

because \(f_j * \Phi = \Phi * f_j \) by (iv). This contradiction shows (iii) holds.

Conversely assume (iii) holds. Then \(A \) has a bounded approximate identity \(\{ u_{\alpha} \} \) which is quasicentral for \(X \). So we assume, without loss of generality, that \(\{ \pi_{\lambda}(u_{\alpha}) \} \) converges to \(\Phi = \text{supp } A \) for the weak*-topology. Then

\[
\langle x, f * \Phi \rangle = \lim_{\alpha} \langle x * f, \pi_{\lambda}(u_{\alpha}) \rangle = \lim_{\alpha} \langle u_{\alpha} x, f \rangle = \lim_{\alpha} \langle u_{\alpha} x, f \rangle = \lim_{\alpha} \langle f * x, \pi_{\lambda}(u_{\alpha}) \rangle = \langle x, \Phi * f \rangle
\]

for all \(x \in X \) and \(f \in X^* \). Thus (iv) and so (i) holds.

(II) Suppose that \(AX = XA = Y \) and \(Y^* = (Y^* * A) + (A * Y^*) \). Let \(x \in X \) and \(f \in X^* \). Then there are \(\varphi, \psi \in Y^* \) and \(a, b \in A \) such that \(f | Y = \varphi * a + b * \psi \). Therefore

\[
\langle x, f * \Phi \rangle = \lim_{\lambda} \langle e_{\lambda} x, f \rangle = \lim_{\lambda} \langle e_{\lambda} x, \varphi * a + b * \psi \rangle = \lim_{\lambda} \langle a e_{\lambda} x, \varphi \rangle + \lim_{\lambda} \langle e_{\lambda} x b, \psi \rangle = \langle a x, \varphi \rangle + \langle x b, \psi \rangle.
\]
Similarly, $\langle x, \Phi \cdot f \rangle = \langle ax, \phi \rangle + \langle xb, \phi \rangle$. Then $\langle x, f \cdot \Phi \rangle = \langle x, \Phi \cdot f \rangle$ for all $x \in X$ and $f \in X^*$. Thus (iv) and so (i) holds.

4. Remarks.

If X is a Banach algebra containing A as a subalgebra, then X becomes naturally a two-sided Banach A-module. In that case, A^{**} can be regarded as a subalgebra of X^{**} the Banach algebra with the first Arens product and the following equations hold:

$$F\phi = F \cdot \phi \quad \text{and} \quad \phi F = \phi \cdot F \quad (\phi \in A^{**}, \, F \in X^{**}),$$

where $F\phi$ and ϕF mean the products of F and ϕ under the first Arens product in X^{**}. Therefore we see easily that the theorem is a generalization of one given in [2].

References
