<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>n-Generator Property of a Polynomial Ring</td>
</tr>
<tr>
<td>Author(s)</td>
<td>MATSUDA, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 16: 17-23</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2964</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
n-Generator Property of a Polynomial Ring

Ryûki MATSUDA*

Let A be a commutative ring with identity, and let n be a natural number. If each ideal of A is generated by n elements, A is said to have rank n. If each finitely generated ideal of A is generated by n elements, A is said to have n-generator property. Let X be an indeterminate. A condition for a polynomial ring $A[X]$ to have rank n was determined in [4, §5]. Let S be a torsionfree cancellative commutative monoid. More generally, a condition for a semigroup ring $A[X; S]$ to have rank n was determined in [4, §5]. As to n-generator property, a condition for $A[X; S]$ to have a 1-generator property was determined in [2]. Let N be the nilradical of A. A condition for $A[X; S]$ to have n-generator property was determined in [5, §3], when $N=(0)$.

In this paper we concern conditions for a polynomial ring $A[X]$ to have n-generator property, when $N\neq(0)$. We give conditions for $A[X]$ to have n-generator property, when A is a semilocal ring (i.e. one with only a finite number of maximal ideals), or A has few zerodivisors, or N is finitely generated, or $n=2$.

§ 1.

Lemma 1 ([6, (11.15)]). *Let a be an element of A such that $a^2=a(N)$. Then there exists an idempotent e of A such that $a=e(N)$.*

Lemma 2. Assume A has dimension 0 (‘dimension’ means the Krull dimension), and let $a \in A$. Then A has a direct sum decomposition $A=A_1 \oplus A_2$ such that ae_i is either a unit or a nilpotent of A_i for each i, where e_i is the identity of A_i.

Proof. We set $A/N=\bar{A}$ and set $a+N=\bar{a}$. \bar{A} is a regular (i.e. von Neumann regular) ring. Therefore we have $\bar{a}\bar{A}=\bar{e}\bar{A}$ for an idempotent e of \bar{A}. By Lemma 1, we have $E=e\bar{A}$ for an idempotent e of A. We set $A_1=eA$ and $A_2=(1-e)A$.

Lemma 3. Assume dim $A=0$, and let $a_1,\ldots, a_i \in A$. Then A has a direct sum decomposition $A=A_1 \oplus \cdots \oplus A_m$ such that a_ie_i is either a unit or a nilpotent of A_j for each i and j.

Proof. By Lemma 2, we have $A=A_1 \oplus A_2$ such that a_ie_i is either a unit or a

Received February 20, 1984.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
nilpotent of A_i for each i. We apply Lemma 2 for A_i and $a_2 e_i$ for each i. The rest is similar.

Lemma 4 ([3, §4, Proposition 17]). If $A[X]$ has n-generator property, then $\dim A = 0$.

Lemma 5 ([1]). If each prime ideal of A is finitely generated, then A is a Noetherian ring.

Lemma 6. Let A be a local ring (i.e. one with only one maximal ideal M). If $A[X]$ has n-generator property, then M is finitely generated.

Proof. Suppose the contrary. We take elements $p_i \in A$ such that $0 \subseteq (p_1) \subseteq (p_1, p_2) \subseteq \cdots \subseteq (p_1, \ldots, p_n) \subseteq M$. We set $a = (p_1 X, \ldots, p_n X^n, X^{n+1}) A[X]$. We have $a = (f_1, \ldots, f_n) A[X]$ for elements $f_i \in A[X]$. We have $f_i = a_i X + a_i^1 X^2 + \cdots$, where $a_1 \in (p_1)$, $a_i \in (p_1, p_2)$, $a_i \in (p_1, \ldots, p_n)$ for $1 \leq i \leq n$. Since $p_1 X \in (f_1, \ldots, f_n) A[X]$, we may take as follows:

$$
\begin{align*}
 f_1 &= p_1 X + a_1^1 X^2 + a_1^2 X^3 + \cdots \\
 f_2 &= a_2^1 X + a_2^2 X^3 + \cdots \\
 \vdots \\
 f_n &= a_n^1 X + a_n^2 X^3 + \cdots,
\end{align*}
$$

where $a_1^i \in (p_2)$, $a_i^2 \in (p_2, p_3)$, $a_i^i \in (p_2, \ldots, p_n)$ for $2 \leq i \leq n$. Since $p_2 X^2 \in (f_1, \ldots, f_n) A[X]$, we may take as follows:

$$
\begin{align*}
 f_1 &= p_1 X + a_1^1 X^2 + a_1^2 X^3 + \cdots \\
 f_2 &= p_2 X^2 + a_2^2 X^3 + \cdots \\
 \vdots \\
 f_n &= a_n^2 X^3 + \cdots,
\end{align*}
$$

where $a_1^2 \in (p_3), \ldots, a_i^i \in (p_3, \ldots, p_n)$ for $3 \leq i \leq n$. Finally we may take as follows:

$$
\begin{align*}
 f_1 &= p_1 X + a_1^2 X^2 + \cdots + a_1^n X^n + \cdots \\
 f_2 &= p_2 X^2 + \cdots + a_2^n X^n + \cdots \\
 \vdots \\
 f_n &= p_n X^n + \cdots.
\end{align*}
$$

Then $X^{n+1} \in (f_1, \ldots, f_n) A[X]$ derives the contradiction of $1 \in M$.

Theorem 7. Let A be a semilocal ring. Then $A[X]$ has n-generator property, if and only if $A[X]$ has rank n.

Proof. The necessity. By Lemma 4, we have $\dim A = 0$. By Lemma 3, we have $A = A_1 \oplus \cdots \oplus A_m$, where A_i is a local ring with the maximal ideal M_i for each
i. $A_i[X]$ has n-generator property. By Lemma 6, M_i is finitely generated. By Lemma 5, A_i is a Noetherian ring for each i. Hence $A_i[X]$ is a Noetherian ring. It follows that $A[X]$ is a Noetherian ring, and that $A[X]$ has rank n.

If the set of zerodivisors of A is a union of a finite number of prime ideals of A, A is said to have few zerodivisors.

Theorem 8. Assume that A has few zerodivisors. Then $A[X]$ has n-generator property if and only if $A[X]$ has rank n.

Proof. The necessity. We have $\dim A = 0$. Therefore A is its own total quotient ring. It follows that A is a semilocal ring. By Theorem 7, $A[X]$ has rank n.

§ 2.

Throughout this section, we assume that N is finitely generated. Let k be a natural number such that $N^{k+1} = (0)$. We set as follows:

$$\begin{align*}
N^k &= (p_1, \ldots, p_{n(1)}), \\
N^{k-1}/N^k &= (p_{n(1)+1} + N^k, \ldots, p_{n(2)} + N^k), \\
N/N^2 &= (p_{n(k-1)+1} + N^2, \ldots, p_{n(k)} + N^2).
\end{align*}$$

We call $\{p_1, p_2, \ldots, p_{n(k)}\}$ a set of $*$-generators for N. Let $k(A)$ be the least natural number k with $N^{k+1} = (0)$. If we choose above $n(1), n(2), \ldots, n(k(A))$ least, we call the set $\{p_1, p_2, \ldots, p_{n(k(A))}\}$ of $*$-generators for N a minimal set of $*$-generators for N. And we set $n(k(A)) = n_0(k(A))$. If, for each decomposition $A = A_1 + \cdots + A_m$, we have $n_0(k(A_i)) \geq n$ for some i, we call A bad.

Lemma 9. Let $\{p_1, p_2, \ldots, p_{n(k)}\}$ be a set of $*$-generators for N. Assume that A has a decomposition $A = A_1 \oplus A_2$, and let e_1 be the identity of A_1.

1. $N^l = N^l e_1$ for each l, where N_l denotes the nilradical of A_l.
2. $N^l/N^{l+1} = (p_{n(k-l)+1} e_1 + N^{l+1}), \ldots, p_{n(k-l)+1} e_1 + N^{l+1})$.
3. $k(A_1) \leq k(A)$.
4. $n_0(k(A_1)) \leq n_0(k(A))$.
5. $n_0(k(A_1)) = n_0(k(A))$ implies $k(A_1) = k(A)$.

Lemma 10. If $A[X]$ has n-generator property, then we have a decomposition $A = A_1 \oplus \cdots \oplus A_m$ such that $n_0(k(A_i)) < n$ for each i.

Proof. Suppose the contrary. We use Lemma 9. For each decomposition $A = A_1 \oplus \cdots \oplus A_m$, there exists a bad factor A_i. We choose a bad factor A_i, $n_0(k(A_i))$ of which is least of all decompositions $A = A_1 \oplus \cdots \oplus A_m$ and of its all bad factors. We rewrite A_i to be A. We set $k(A) = k$. We have $n_0(k) \geq n$. Let $\{p_1, p_2, \ldots, p_{n(k)}\}$ be a set of $*$-generators for N. Assume that A has a decomposition $A = A_1 \oplus A_2$, and let e_1 be the identity of A_1.

1. $N^l = N^l e_1$ for each l, where N_l denotes the nilradical of A_l.
2. $N^l/N^{l+1} = (p_{n(k-l)+1} e_1 + N^{l+1}), \ldots, p_{n(k-l)+1} e_1 + N^{l+1})$.
3. $k(A_1) \leq k(A)$.
4. $n_0(k(A_1)) \leq n_0(k(A))$.
5. $n_0(k(A_1)) = n_0(k(A))$ implies $k(A_1) = k(A)$.
\(p_{n_0(k)}\) be a set of \(*\)-generators of \(N\), and set \(a = (p_1, X, \ldots, p_n, X^{n+1})A[X]\). We have \(a = (f_1, \ldots, f_n)A[X]\) for \(f_i \in A[X]\). We have \(f_i = a_1^i X + a_2^i X^2 + \cdots\), where \(a_1^i \in \langle p_1 \rangle, \ldots, a_n^i \in \langle p_1, \ldots, p_n \rangle\) for \(1 \leq i \leq n\). We set \(a_1^i = p_1 b_1^i, \ldots, a_n^i = p_1 b_n^i\) for \(b_i \in A\). We have \(p_1 X = \Sigma f_i g_i\), where \(g_i = c_0^i + c_1^i X + \cdots \in A[X]\). Applying Lemma 3 for \(\{b_1^i, \ldots, b_n^i, c_0^i, \ldots, c_n^i\}\), we have \(A = A_1 \oplus \cdots \oplus A_m\). Choose a bad factor \(A_i\). It follows that \(n_0(k(A_i)) = n_0(k)\) and that \(\{p_1 e_i, p_2 e_i, \ldots, p_{n_0(k)} e_i\}\) is a minimal set of \(*\)-generators for \(N_i\). We rewrite \(A_i\) to be \(A\). By \(p_1 X = \Sigma f_i g_i\), we may take as follows:

\[
\begin{align*}
f_1 &= p_1 X + a_1^1 X^2 + \cdots \\
f_2 &= a_1^2 X^2 + \cdots \\
f_n &= a_1^n X^2 + \cdots,
\end{align*}
\]

where \(a_1^i \in \langle p_2 \rangle, \ldots, a_1^i \in \langle p_2, \ldots, p_n \rangle\) for \(2 \leq i \leq n\). We set \(a_2^i = p_2 b_2^i, \ldots, a_n^i = p_2 b_n^i\). We have \(p_2 X^2 = \Sigma f_i g_i\), where \(g_i = c_0^i + c_1^i X + \cdots \in A[X]\). Applying Lemma 3 for \(\{b_2^i, \ldots, b_n^i, c_0^i, \ldots, c_n^i\}\), we have \(A = A_1 \oplus \cdots \oplus A_m\). Choose a bad factor \(A_i\). It follows that \(n_0(k(A_i)) = n_0(k)\) and that \(\{p_1 e_i, p_2 e_i, \ldots, p_{n_0(k)} e_i\}\) is a minimal set of \(*\)-generators for \(N_i\). We rewrite \(A_i\) to be \(A\). By \(p_2 X^2 = \Sigma f_i g_i\), we may take as follows:

\[
\begin{align*}
f_1 &= p_1 X + a_1^2 X^2 + a_1^1 X^3 + \cdots \\
f_2 &= p_2 X^2 + a_1^2 X^3 + \cdots \\
f_3 &= a_1^3 X^3 + \cdots \\
f_n &= a_1^n X^3 + \cdots,
\end{align*}
\]

where \(a_1^i \in \langle p_3 \rangle, \ldots, a_1^i \in \langle p_3, \ldots, p_n \rangle\) for \(3 \leq i \leq n\). We set \(a_3^i = p_3 b_3^i, \ldots, a_n^i = p_3 b_n^i\). We have \(p_3 X^3 = \Sigma f_i g_i\), where \(g_i = c_0^i + c_1^i X + \cdots \in A[X]\). Applying Lemma 3 for \(\{b_3^i, \ldots, b_n^i, c_0^i, \ldots, c_n^i\}\), we have \(A = A_1 \oplus \cdots \oplus A_m\). Finally we may take as follows:

\[
\begin{align*}
f_1 &= p_1 X + a_1^2 X^2 + a_1^1 X^3 + \cdots + a_2^n X^n + \cdots \\
f_2 &= p_2 X^2 + a_2^1 X^3 + \cdots + a_2^n X^n + \cdots \\
f_n &= p_3 X^n + \cdots,
\end{align*}
\]

We have \(X^{n+1} = \Sigma f_i g_i\), where \(g_i = c_0^i + c_1^i X + \cdots \in A[X]\). Applying Lemma 3 for \(\{c_0^i, \ldots, c_n^i\}\), we have \(A = A_1 \oplus \cdots \oplus A_m\). Choose a bad factor \(A_i\). It follows that \(n_0(k(A_i)) = n_0(k)\) and that \(\{p_1 e_i, p_2 e_i, \ldots, p_{n_0(k)} e_i\}\) is a minimal set of \(*\)-generators for \(N_i\). We rewrite \(A_i\) to be \(A\). By \(X^{n+1} = \Sigma f_i g_i\), we have \(1 \in N\); a contradiction.

Lemma 11. Assume that \(\dim A = 0\), and let \(\{p_1, p_2, \ldots, p_{n_0(k)}\}\) be a set of \(*\)-generators for \(N\). Let \(a \in A\). Then we have a decomposition \(A = A_1 \oplus \cdots \oplus A_m\) such that \(ae_i\) is either a unit of \(A_i\) or of the form \((p_1 e_{i_1} + p_2 e_{i_2} + \cdots + p_{n_0(k)} e_{i_{n_0(k)}}) e_i\).
where \mathcal{E}_{ij} is either zero or a unit of A for each i and j.

Proof. We may suppose that a is neither zero nor a unit of A. By Lemma 2, we have $A = A_1 \oplus A_2$, where ae_1 is a unit of A_1 and ae_2 is a nilpotent of A_2. Hence we may suppose that a is a nilpotent of A. We have $a = p_1 a_1 + p_2 a_2 + \ldots + p_n(a_n)$ for $a_i \in A$. We use Lemma 9. Applying Lemma 2 for $a_{n(k)}$, we have $A = A_1 \oplus A_2$. Since $\{p_1 e_i, p_2 e_i, \ldots, p_{n(k)} e_i\}$ is a set of $*$-generators for N, and since $p_{n(k)} N \subset (p_1, p_2, \ldots, p_{n(k)} - 1)$, we have $ae_i = (p_1 b_1 + p_2 b_2 + \ldots + p_{n(k)} b_{n(k)}) e_i$, where $b_{n(k)}$ is either zero or a unit of A. We rewrite A_1 to A. Then $a_{n(k)}$ is either zero or a unit of A. Applying Lemma 2 for $a_{n(k)} - 1$, we have $A = A_1 \oplus A_2$. Since $\{p_1 e_i, p_2 e_i, \ldots, p_{n(k)} e_i\}$ a set of $*$-generators for N, and since $p_{n(k) - 1} N \subset (p_1, p_2, \ldots, p_{n(k) - 2})$, we have $ae_i = (p_1 b_1 + \ldots + p_{n(k) - 1} b_{n(k) - 1} + p_{n(k)} b_{n(k)}) e_i$, where $b_{n(k) - 1}$ and $b_{n(k)}$ are either zero or a unit of A. The rest is similar.

Lemma 12. Assume that $\dim A = 0$, and let $\{p_1, p_2, \ldots, p_{n(k)}\}$ be a set of $*$-generators for N. Let $a_1, \ldots, a_l \in A$. Then we have a decomposition $A = A_1 \oplus \cdots \oplus A_m$ such that a_{ij} is either a unit of A_j or of the form $(p_1 \mathcal{E}_{i1} + p_2 \mathcal{E}_{i2} + \cdots + p_{n(k)} \mathcal{E}_{in(k)}) e_j$, where \mathcal{E}_{ij} is either zero or a unit of A for each i, j and h.

Proof. Applying Lemma 11 for a_1, we have a decomposition $A = A_1 \oplus \cdots \oplus A_m$ such that a_{1j} is either a unit of A_j or of the form $(p_1 \mathcal{E}_{1j1} + p_2 \mathcal{E}_{1j2} + \cdots + p_{n(k)} \mathcal{E}_{1jm(k)}) e_j$, where \mathcal{E}_{ij} is either zero or a unit of A for each i and j. We apply Lemma 11 for A_i and $a_{2j} e_i (1 \leq i \leq m)$. We have a new decomposition $A = A_1 \oplus \cdots \oplus A_m$ such that a_{ij} is either a unit of A_j or of the form $(p_1 \mathcal{E}_{i1j1} + p_2 \mathcal{E}_{i1j2} + \cdots + p_{n(k)} \mathcal{E}_{i1jm(k)}) e_j$, where \mathcal{E}_{ijh} is either zero or a unit for each j and h ($1 \leq i \leq 2$). The rest is similar.

Lemma 13. Let $f_i = a_0^i + a_1^i X + \cdots + a_{d_i}^i X^{d_i} \in A[X]$ for $1 \leq i \leq n + 1$. Let l be a natural number less than n. Assume that $a_{d_i}^i$ is either a unit or of the form $p_1 \mathcal{E}_{i1} + \cdots + p_{l} \mathcal{E}_{il}$ for each i. Then we have $(f_1, \ldots, f_{n+1}) A[X] = (g_1, \ldots, g_{n+1}) A[X]$ for some $g_i \in A[X]$ such that $\Sigma \deg (g_i) < \Sigma d_i$.

Proof. Suppose that $d_1 \leq d_2$ and that \mathcal{E}_{i1} is a unit of A for instance. Then we replace f_2 by $f_2 - \mathcal{E}_{11}^{-1} \mathcal{E}_{21} X^{d_2 - d_1} f_1$. The rest is similar.

Lemma 14. If $\dim A = 0$ and if $n_0(k(A)) < n$, then $A[X]$ has n-generator property.

Proof. We show that an ideal a of $A[X]$ generated by $n + 1$ elements f_1, \ldots, f_{n+1} is generated by n elements by the induction on $\Sigma \deg (f_i)$. We set $f_i = a_{0i}^i + a_{1i}^i X + \cdots + a_{d_i}^i X^{d_i}$ for $1 \leq i \leq n + 1$. Set $k(A) = k$, and let $\{p_1, p_2, \ldots, p_{n(k)}\}$ be a minimal set of $*$-generators for N. Applying Lemma 12 for $\{a_{d_i}^1 + \cdots + a_{d_i}^n\}$, we have $A = A_1 \oplus \cdots \oplus A_m$. We rewrite A_i by $A(1 \leq i \leq n)$. Then $a_{d_i}^i$ is either a unit of A or of the form $p_1 \mathcal{E}_{i11} + p_2 \mathcal{E}_{i12} + \cdots + p_{n(k)} \mathcal{E}_{i1n(k)}$, where \mathcal{E}_{ij} is either zero or a unit.
of A. By Lemma 13, we may choose $g_i \in A[X]$ such that $(f_1, \ldots, f_{n+1})A[X] = (g_1, \ldots, g_{n+1})A[X]$ and that $\sum \deg(g_i) < \sum d_i$. Hence a is generated by n elements.

Theorem 15. Assume that N is finitely generated. Then $A[X]$ has n-generator property if and only if $\dim A = 0$ and A has a decomposition $A_1 \oplus \cdots \oplus A_m$ such that $n_0(k(A_i)) < n$ for each i.

Proof. The necessity. By Lemma 4, we have $\dim A = 0$. By Lemma 10, A has a decomposition $A_1 \oplus \cdots \oplus A_m$ such that $n_0(k(A_i)) < n$ for each i. The sufficiency. By Lemma 14, $A_i[X]$ has n-generator property. It follows that $A[X]$ has n-generator property.

§3.

Proposition 16. If $A[X]$ has n-generator property, then $N^n = (0)$.

Proof. Suppose the contrary. We have $p_1 \cdots p_n \neq 0$ for some $p_i \in N$. There exists a prime ideal P of A containing $(0 : p_1 \cdots p_n)$. $A_p[X]$ has n-generator property. By Theorem 7, $A_p[X]$ has rank n. By [4, §5], we have $P^n A_p = (0)$. Hence $p_1 \cdots p_n A_p = (0)$, which is a contradiction.

Lemma 17. Assume that $A[X]$ has n-generator property. If a is a finitely generated ideal of A contained in N, then a is generated by $n - 1$ elements.

Proof. We work for a what we worked for N in §2.

We have another proof of Proposition 16 from the above proof of Lemma 17.

Proposition 18. If $A[X]$ has n-generator property, then A has $(n - 1)$-generator property.

Proof. Let $a = (a_1, \ldots, a_l)$ be a finitely generated ideal of A. Applying Lemma 3 for $\{a_1, \ldots, a_l\}$, we have $A = A_1 \oplus \cdots \oplus A_m$. If $a_j e_i$ is a unit of A_i for some j, then $a A_i$ is generated by 1 element of A_i. If $\{a_{i_1} e_{j_1}, \ldots, a_{l_1} e_{j_l}\} \subset N_0$, then $a A_i$ is generated by $n - 1$ elements by Lemma 17. Hence a is generated by $n - 1$ elements.

Theorem 19. $A[X]$ has 2-generator property if and only if A has 1-generator property, of dimension 0 and $N^2 = (0)$.

Proof. The necessity. By Lemma 4, we have $\dim A = 0$. By Proposition 16, we have $N^2 = (0)$. By Proposition 18, A has 1-generator property. The sufficiency. We show that an ideal $a = (f_1, f_2, f_3)A[X]$ of $A[X]$ generated by 3 elements is generated by 2 elements. We set $f_i = a_{i_1} + a_{i_2} X + \cdots + a_{i_3} X^{d_i}$. We rely on the induction on $d_1 + d_2 + d_3$. We may assume that $d_1 \leq d_2 \leq d_3$. Applying Lemma 3 for $\{a_{i_1}, a_{i_2}, a_{i_3}\}$, we have $A = A_1 \oplus \cdots \oplus A_m$. Hence we may assume
that \(a^{d_i} \) is either a unit or a nilpotent of \(A \) (\(1 \leq i \leq 3 \)). If either \(a^{d_1} \) or \(a^{d_2} \) is a unit, we may find \(g_i \) such that \(a=(g_1, g_2, g_3)A[X] \) and \(\sum \deg (g_i)<d_1+d_2+d_3 \). Then \(a \) is generated by 2 elements. Suppose \(\{a^{d_1}, a^{d_2}\} \subset N \). We have \((a^{d_1}, a^{d_2})=(p) \) for some \(p \in N \). We set \(a^{d_1}=pb_1 \) and \(a^{d_2}=pb_2 \). By Lemma 3, we may assume that \(b_i \) is either a unit or a nilpotent of \(A \) (\(1 \leq i \leq 2 \)). If \(b_1 \) is a unit, we may find \(g_i \in A[X] \) such that \(a=(g_1, g_2, g_3)A[X] \) and \(\sum \deg (g_i)<d_1+d_2+d_3 \). Hence \(a \) is generated by 2 elements. If \(b_1 \in N \), we have \(a^{d_1}=0 \).

References