<table>
<thead>
<tr>
<th>Title</th>
<th>Continuity of the mean values of BMO functions and Calderon-Zygmund properties of certain singular integrals : Dedicated to Professor Shigeki YANO on his sixtieth birthday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YABUTA, Kozo</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 15: 1-8</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2956</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
Continuity of the mean values of BMO functions and Calderón-Zygmund properties of certain singular integrals

Dedicated to Professor Shigeki YANO on his sixtieth birthday

Kôzô Yabuta*

In this note we shall show that certain bilinear singular integrals $T(a,f)$ with symmetric property in some sense are bounded bilinear operators from $\text{BMO} \times L^p$ into L^p, more precisely, for any BMO function a the operator $T(a, \cdot)$ is a Calderón-Zygmund singular integral operator (Theorems 1 and 2). These results are, in a sense, extensions of the relating results in Baishansky and Coifman [1]. To prove the above, the H"older continuity of the mean values of BMO functions plays the essential role. We also use "bilinear pseudo-differential operator" introduced by Coifman and Meyer [3], in order to prove L^2 boundedness of singular integrals. As an application we extend a recent result of J. Cohen on a bilinear singular integral [2], in the one-dimensional case.

Section 1 is for the preliminaries. In Section 2 we investigate the continuity of the mean values of BMO functions. We treat in Section 3 singular integrals such as $\text{p.v.} \int_{-\infty}^{\infty} \left[A(2x-y) + A(y) - 2A(x)\right](x-y)^{-2}f(y)dy$ for $A'(x) \in \text{BMO}$. Modifying the proof in Section 3 somewhat, we discuss, in Section 4, singular integrals such as $\text{p.v.} \int_{-\infty}^{\infty} \left[A(x) - A(y) - 2^{-1}(A'(x) + A'(y))(x-y)\right](x-y)^{-3}f(y)dy$ for $A''(x) \in \text{BMO}$. In Section 5 we extend a result of J. Cohen.

$C_0^\infty = C_0^\infty(\mathbb{R})$ will denote the set of all infinitely differentiable functions with compact support and $L^p = L^p(\mathbb{R})$ ($1 \leq p \leq \infty$) will denote the usual L^p space with norm $\| \cdot \|_p$. $H^1(\mathbb{R})$ is the Hardy space H^1 in the sense of Stein-Weiss. Weak L^p space is the set of all locally integrable functions f satisfying $\sup_{t>0} \left(\int_{\{x \in \mathbb{R}; \ |f(x)| > t\}} |f(x)| \right) < + \infty$. Here $|E|$ denotes the Lebesgue measure of the set E. Finally we note that the letter C will denote a constant which may vary from line to line.

1. Preliminaries

In the sequel, we treat only the one-dimensional case. For any interval (a, b) we denote by $f_{(a,b)}$ the mean value of a function f on (a, b), i.e., $(b-a)^{-1} \int_a^b f(x)dx$.

Received January 14, 1983, Revised February 22, 1983. Partly supported by the Grant-in-Aid for Scientific Research (C-56540060) and (A-57340004), the Ministry of Education, Japan.

* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310 Japan.
A locally integrable function \(f \) on the real line \(\mathbb{R} \) is said to be a function of bounded mean oscillation (BMO) if \(\|f\|_{BMO} = \sup_{(a,b)} (b-a)^{-1} \int_a^b |f(x) - f_{(a,b)}| \, dx < +\infty \). Next we recall the definition of a kernel of Calderón-Zygmund in the sense of Coifman and Meyer [3, p. 79 and p. 94].

Definition 1. A function on \(\mathbb{R} \times \mathbb{R} \backslash \{(x, x); x \in \mathbb{R}\} \) is said to be a kernel of Calderón-Zygmund, if it satisfies the following conditions.

1. For any \(f \in C_0^\infty(\mathbb{R}) \),
 \[
 T(f)(x) = \lim_{\varepsilon \to 0} \int_{|y-x| > \varepsilon} K(x, y) f(y) \, dy = p.v. \int K(x, y) f(y) \, dy
 \]
 exists for almost all \(x \in \mathbb{R} \).

2. There exists \(C_1 > 0 \) such that
 \[
 \|T(f)\|_2 \leq C_1 \|f\|_2, \quad f \in C_0^\infty(\mathbb{R}).
 \]

3. There exists \(C_2 > 0 \) such that
 \[
 |K(x, y)| \leq C_2 |x-y|^{-1}.
 \]

4. There exist \(C_3 > 0 \) and \(0 < \delta \leq 1 \) such that for \(0 < 2|y-z| \leq |x-z| \)
 \[
 \begin{align*}
 (1.4a) \quad |K(x, y) - K(x, z)| &\leq C_3 |y-z|^{\delta}/|x-z|^{1+\delta}, \\
 (1.4b) \quad |K(y, x) - K(z, x)| &\leq C_3 |y-z|^{\delta}/|x-z|^{1+\delta}.
 \end{align*}

 This Calderón-Zygmund singular integral operator possesses the same properties as the classical one [3, Ch. IV.], i.e., it is a bounded operator on \(L^p \) \((1 < p < \infty)\), from \(L^\infty \) to BMO, from \(H^1 \) to \(L^1 \) and from \(L^1 \) to weak-\(L^1 \). It has \(L^p \)-boundedness of truncated maximal operator, too, i.e., putting
 \[
 T_\varepsilon(f)(x) = \int_{|x-y| > \varepsilon} K(x, y) f(y) \, dy
 \]
 and \(T_\ast(f)(x) = \sup_{\varepsilon > 0} |T_\varepsilon(f)(x)| \), we have for \(1 < p < \infty \)
 \[
 \|T_\ast(f)\|_p \leq C_p \|f\|_p, \quad f \in L^p.
 \]

2. Continuity of the mean values of a BMO function

 From the John-Nirenberg inequality for BMO functions it follows the following two facts, which are useful in the later sections.

 Lemma 1. There exists \(C > 0 \) such that
for any \(a \leq c < d \leq b \) and any \(f \in \text{BMO} \).

Lemma 2. For any \(d > 1 \) there exists \(C > 0 \) such that

\[
|f_{(a,b)} - f_{(a,c)}| \leq C \|f\|_\text{BMO} \left| \frac{c-b}{b-a} \right| \left(\log \frac{b-a}{d-c} + 1 \right)
\]

for any \(f \in \text{BMO} \) and \(d|b-c| \leq |b-a| \).

The second lemma shows Hölder continuity of the mean values of a BMO function. For the sake of completeness we shall give a proof of Lemma 2, in which the proof of Lemma 1 is simultaneously contained.

Proof of Lemma 2. Let \(f \in \text{BMO} \). As is easily seen, \(|f_{(a,b)} - f_{(a,c)}| \leq (c-a) (b-a)^{-1} \|f\|_\text{BMO} \) \((a < b < c)\). So we may assume \(1 < d < 2 \). We may also assume \(\|f\|_\text{BMO} = 1 \), \(a = 0 \), \(b = 1 \), \(1 < c < 2 \) and \(f_{(0,1)} = 0 \). Then, since \(|f_{(0,2)}| = |f_{(0,1)} - f_{(0,2)}| \leq 2 \), by John-Nirenberg's theorem

\[
(2.1) \quad |\{x \in (0,2); |f(x)| > t\}| \leq \left| \{x \in (0,2); |f(x) - f_{(0,2)}| > t - |f_{(0,2)}|\} \right| \leq C_1 e^{-C_2 t}.
\]

Therefore, for \(1 < p < \infty \) and \(0 < s < 1 \) we have

\[
\left(\int_1^{1+s} |f(x)|^p \, dx \right)^{1/p} \leq C(p\Gamma(p))^{1/p} \leq C' p.
\]

Thus, taking \(p = -\log s \) and \(1/q = 1 - 1/p \), and using Hölder's inequality we get

\[
\int_1^{1+s} f(x) \, dx \leq \frac{s^{1/q}}{\Gamma(1 + s)} \left(\int_1^{1+s} |f(x)|^p \, dx \right)^{1/p} \leq C_3 p^{1/q} = C_3 s \log s^{-1}.
\]

(This inequality can also be obtained by using (2.1) and the rearrangement of \(f \).) Therefore, since \(\int_0^1 f(x) \, dx = 0 \), we get

\[
\int_0^{1+s} f(x) \, dx - \int_0^1 f(x) \, dx \leq (1+s)^{-1} \int_1^{1+s} f(x) \, dx \leq C_3 s \log s^{-1},
\]

which completes the proof of Lemma 2.

Remark 1. This proof is applicable, of course, in higher dimension and due to A. Uchiyama and A. Miyachi. Our original proof was much longer.

Remark 2. As is easily seen, one has

\[
|f_{(a,b)} - f_{(a,c)}| \leq 2 \|f\|_\text{BMO} \left| \frac{c-b}{c-a} \right|.
\]

However, for \(1 < p < \infty \), one has only
\[|f_{(a,b)} - f_{(a,c)}| \leq C \| f \|_p \frac{|c-b|^{1/q}}{|c-a|} \quad (d|c-b| \leq |b-a|), \]

where \(1/p + 1/q = 1 \), and there is no continuity when \(|b-c|/|b-a| \) tends to zero. In fact, let \(0 < c < a < 1 \) and set \(f(x) = |x|^{-a} (|x| < 1), = 0 (|x| \geq 1) \). Then, \(f \in L^p(-\infty, \infty) \) (\(0 < p < 1/a \)) and for \(0 < b < 1 \)

\[|f_{(0,b)} - f_{(0,b+c/b)}| = \frac{a}{1-a} b^{b-a} + O(b^{2b-a}), \]

which tends to infinity as \(b \) tends to zero. But, \(b^{b+c/b} \) tends to zero. Thus, the continuity of mean values in the sense of Lemma 2 is characteristic for bounded functions and BMO functions in the framework of \(L^p \) spaces. This reflects the dilation-invariance of the \(L^\infty \) and BMO norms.

3. Singular integrals I

We consider here the following singular integrals. For a real number \(s \) and a BMO function \(a \) we define

\[S_0^s(f)(x) = \text{p. v.} \int_{-\infty}^{\infty} K_s(x, y) f(y) dy, \]

and

\[T_0^s(f)(x) = \text{p. v.} \int_{-\infty}^{\infty} K_s(x, y) \text{sgn}(x-y) f(y) dy, \]

where \(K_s(x, y) = [A(x+s(x-y)) + A(x-s(x-y)) - 2A(x)]/(x-y)^2 \) and \(A'(x) = a(x) \). The case \(s = 1 \) and \(a \in L^\infty \) is treated in Coifman and Meyer [3, pp. 160-163].

Now, one easily sees that for every \(f \in C_0^\infty(\mathbb{R}) \) the principal values of the above singular integrals exist almost everywhere. By modification of the arguments in Coifman and Meyer [3, pp. 160–163] or Corollary 4.2 in Yabuta [5], it follows that there exists \(C > 0 \) such that

\[\| S_0^s(f) \|_2 \leq C \| a \|_s \| f \|_2, \quad f \in C_0^\infty(\mathbb{R}). \]

This also holds for \(T_0^s \). Next, the kernel \(K(x, y) = K_s(x, y) \) satisfies the following inequalities, which we shall show soon later.

(3.1) \(|K(x, y)| \leq 4 \| a \|_s |x-y|^{-1}, \)

(3.2) \(|K(x, y) - K(x, z)| \leq C \| a \|_s \frac{|y-z|}{|x-z|^2} \log \left| \frac{x-z}{y-z} \right|, \quad (2|y-z| < |x-z|), \)

(3.3) \(|K(y, x) - K(z, x)| \leq C \| a \|_s \frac{|y-z|}{|x-z|^2} \log \left| \frac{x-z}{y-z} \right|, \quad (2|y-z| < |x-z|). \)

The kernel \(K_s(x, y) \text{sgn}(x-y) \) also satisfies the same inequalities as above. (3.1) implies (3.3) and (3.2) and (3.3) imply (1.4). So, we have
THEOREM 1. For any $a \in \text{BMO}$ and $s \in \mathbb{R}$, the operators S_0^s and T_0^s are Calderón-Zygmund singular integral operators.

In order to prove the above theorem we have to show the inequalities (3.1), (3.2) and (3.4). (3.1) is easy. As for (3.2)

$$K(x, y) - K(x, z)$$

$$= \left[A(x+s(x-z)) + A(x-s(x-z)) - 2A(x) \right] \left[(x-y)^{-1} - (x-z)^{-1} \right] (x-z)^{-1}$$

$$+ \left[\frac{A(x+s(x-y)) + A(x-s(x-y)) - 2A(x)}{x-y} \right] \times (x-y)^{-1} = I_1 + I_2.$$

Then, we have

$$|I_1| \leq 4\|a\|_{\text{BMO}} \frac{|y-z|}{|x-y||x-z|} \quad \text{(by (3.1))}$$

$$\leq C \frac{|y-z|}{|x-z|^2} \quad (2|y-z| < |x-z|).$$

And

$$|x-y||I_2| \leq \left| \frac{1}{x-y} \int_{x}^{x+s(x-y)} a(t) dt - \frac{1}{x-z} \int_{x}^{x+s(x-z)} a(t) dt \right|$$

$$+ \left| \frac{1}{x-y} \int_{x}^{x-s(x-y)} a(t) dt - \frac{1}{x-z} \int_{x}^{x-s(x-z)} a(t) dt \right|.$$

Hence by Lemma 2

$$|I_2| \leq C \frac{|y-z|}{|x-z|^2} \log \left| \frac{x-z}{y-z} \right|, \quad (2|y-z| < |x-z|).$$

This proves (3.2). Similar calculations give (3.3). This completes the proof of Theorem 1.

4. Singular integrals II

For a function A on the real line let $P_k(A; x, y) = A(x) - A(y) - \cdots - \frac{A^{(k-1)}(y)}{(k-1)!}$ be the k-th Taylor series remainder of A at x expanded about y. Let us consider the following singular integrals,

$$T^k(a, f)(x) = 4\pi i \text{ p.v.} \int_{-\infty}^{\infty} \frac{P_k(A; x, y)}{(x-y)^{k+1}} f(y) dy,$$

$$S^k(a, f)(x) = 4\pi i \text{ p.v.} \int_{-\infty}^{\infty} \frac{P_k(A; x, y) - A^{(k-1)}(x) - A^{(k-1)}(y))(x-y)^{k-1}/k!}{(x-y)^{k+1}} f(y) dy,$$
where \(a(x)\) is the \(k\)-th derivative of \(A\). Let \(\chi_1(\alpha, \xi)\) be the characteristic function of the sector \(\{(r, \theta); r > 0, -\pi/4 < \theta < \pi/2\}\), \(\chi_2\) for \(\{(r, \theta); r > 0, \pi/2 < \theta < 3\pi/4\}\), \(\chi_3\) for \(\{(r, \theta); r > 0, 3\pi/4 < \theta < 3\pi/2\}\), and \(\chi_4\) for \(\{(r, \theta); r > 0, 3\pi/2 < \theta < 7\pi/4\}\). Then for \(a, f \in C_0^\infty\) we have

\[
T^k(a, f)(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x+y)} \sigma(T^k)(x, \xi) \hat{a}(\xi) \hat{f}(\xi) d\xi d\xi,
\]

where \(\hat{a}(\xi) = \int_{-\infty}^{\infty} e^{i\xi x} a(x) dx\) and \(\sigma(T^k)(x, \xi) = [\chi_1 - \chi_2 + \left(1 - 2 \left(\frac{-\xi}{\alpha}\right)^k\right)(\chi_2 - \chi_4)]/k!\). In case \(k=1\) this formula is given in [5, Section 2], and calculated in the same way as in [3, p. 162]. General case can be obtained inductively, noticing \(\sigma(T^k)(-\alpha, -\xi) = \sigma(T^k)(\alpha, \xi)\). We leave the detailed proof to the reader. Hence we get

\[
S^k(a, f)(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x+y)} \sigma(S^k)(x, \xi) \hat{a}(\xi) \hat{f}(\xi) d\xi d\xi,
\]

in which \(\sigma(S^k)(\alpha, \xi) = 2 + \left(\frac{\xi}{\alpha} - \left(\frac{-\xi}{\alpha}\right)^k\right)(\chi_2 - \chi_4)/k!\). Since \(\sigma(S^k)\) is homogeneous of degree zero and \(\sigma(S^k)(\alpha, \xi) = \sigma(S^k)(r, \theta)\) is continuous and piecewise \(C^\infty\) with respect to \(\theta\) \((r, \theta)\) is the polar coordinates) and \(\sigma(S^k)(0, \xi) = 0\), we have by Theorem 3.1 in Yabuta [5]

\[
(4.1) \quad \|S^k(a, f)\|_2 \leq C\|a\|_\infty \|f\|_2, \quad a \in \text{BMO} \quad \text{and} \quad f \in L^2.
\]

This implies (1.2). (1.1) is easy. Next let \(K(x, y)\) be the integral kernel for \(S^k\). Then

\[
K(x, y) = (k!)^{-1} \left[\int_y^x (k(x-t)^{k-1} - (x-y)^{k-1}) a(t) dt \right]/(x-y)^{k+1}.
\]

Put \(F(x, y, t) = (k(x-t)^{k-1} - (x-y)^{k-1})/k!\). Then

\[
(4.2) \quad \int_y^x F(x, y, t) dt = 0,
\]

\[
(4.3) \quad |F(x, y, t)| \leq C|x-y|^{k-1}, \quad \text{and}
\]

\[
(4.4) \quad |F(x, y, t) - F(x, z, t)|, \quad |F(y, x, t) - F(z, x, t)| \leq C|y-z| |x-y|^{k-2}.
\]

To show (1.3) and (1.4) in Definition 1 we may assume \(y < z < x\). Then we get by (4.2)

\[
K(x, y) = \int_y^x F(x, y, t)(\alpha(t) - \alpha(y, x)) dt/(x-y)^{k+1}.
\]

Hence by (4.3)

\[
|K(x, y)| \leq C|x-y|^{-2} \int_y^x |\alpha(t) - \alpha(y, x)| dt \leq C\|a\|_\infty |x-y|^{-1}.
\]

This means (1.3). Next,
Calderón-Zygmund properties

\[K(x, y) - K(x, z) = (x - y)^{-k} \mathcal{L} \left[\frac{1}{x - y} \int_y^z F(x, y, t) a(t) \, dt - \frac{1}{x - z} \int_z^x F(x, z, t) a(t) \, dt \right] \]

\[+ ((x - y)^{-k} - (x - z)^{-k}) \frac{1}{x - z} \int_z^x F(x, z, t) a(t) \, dt \]

\[= I_1 + I_2. \]

For \(I_2 \) as in the above

\[|I_2| \leq C \|a\|_\infty |y - z|/|x - z|^2, \quad (2|y - z| < |x - z|). \]

For \(I_1 \) we get

\[(x - y)^k I_1 = \frac{1}{x - y} \int_y^x F(x, y, t)(a(t) - a(y, x)) \, dt \]

\[+ \frac{1}{x - y} \int_x^z F(x, y, t)(a(t) - a(y, x)) \, dt \]

\[+ \left(\frac{1}{x - y} - \frac{1}{x - z} \right) \int_z^x F(x, y, t)(a(t) - a(z, x)) \, dt \]

\[+ \frac{1}{x - z} \int_z^x (F(x, y, t) - F(x, z, t))(a(t) - a(z, x)) \, dt \]

\[= I_3 + I_4 + I_5 + I_6. \]

Then we have for \(2|y - z| < |x - z| \)

\[|I_3| \leq C \|a\|_\infty |x - y|^{k-2}|y - z| \log \left| \frac{x - y}{y - z} \right| \quad (\text{by Lemma 1 and (4.3)}), \]

\[|I_4| \leq C \|a\|_\infty |x - y|^{k-2}|y - z| \log \left| \frac{x - y}{y - z} \right| \quad (\text{by Lemma 2 and (4.3)}), \]

\[|I_5| \leq C \|a\|_\infty |x - y|^{k-2}|y - z| \quad (\text{by (4.3)}), \]

\[|I_6| \leq C \|a\|_\infty |x - y|^{k-2}|y - z| \quad (\text{by (4.4)}). \]

These show (1.4a). Similarly (1.4b) holds. Therefore we have proved the following

Theorem 2. For any \(a \in BMO \), \(S^k(a, \cdot) \) is a Calderón-Zygmund singular integral operator.

Remark 1. Naturally one can consider other combinations of Taylor series remainder terms.

Remark 2. For bounded \(a \), the corresponding results are known [1].
5. Singular integrals III

In this section we apply Theorem 2 to an extension of a recent result of J. Cohen on a singular integral [2]. The operators considered here are

\[K^k(a, f)(x) = 4\pi i \text{ p.v.} \int_{-\infty}^{\infty} \frac{P_k(A; x, y)}{(x-y)^k} f(y) \, dy \]

and their truncated maximal operators \(K^*_k(a, f) \), where \(a \) is the \((k-1)\)-th derivative of \(A \). Then we have

Theorem 3. If \(a \in BMO \), \(1 < p < \infty \), and \(k=2, 3, \ldots \), then for any \(f \in L^p \) \(K^k(a, f)(x) \) exists for almost every \(x \in \mathbb{R} \) and there exists \(C > 0 \) such that

\[
\| K^k(a, f) \|_p \leq C \| a \|_\infty \| f \|_p \quad \text{and} \\
\| K^*_k(a, f) \|_p \leq C \| a \|_\infty \| f \|_p, \quad f \in L^p.
\]

Proof. The case \(k=2 \) is contained in Corollary (1.2) in [2, p. 694]. So, let \(k=3, 4, \ldots \). Then, we have by easy calculation

\[(5.1) \quad K^k(a, f) = S^{k-1}(a, f) + \frac{1}{(k-1)!} K^2(a, f). \]

Therefore, by the case \(k=2 \) and Theorem 2 we obtain the desired inequalities.

Remark 1. \(K^k(a, \cdot) \) is, in general, neither a bounded operator from \(H^1 \) into \(L^1 \) nor from \(L^1 \) into weak-\(L^1 \). To show them, it is enough to treat the case \(k=2 \), by Theorem 2 and (5.1). An example for the first case is given by \(a(x) = \chi_{(0,\infty)} - \chi_{(-\infty,0)} \), and \(f(x) = a(x) \chi_{(-1,1)} \). For the second case \(a(x) = \log |x| \), \(f(x) = \chi_{(1,2)} \). We leave to the reader to check the above.

Remark 2. We note here that in Theorem (1.1) and Corollary (1.2) in [2, p. 694] \(C(FA, \cdot) \) is not a bounded operator from \(L^1 \) into weak-\(L^1 \), if \(FA \in BMO(\mathbb{R}^n) \) \((n \geq 2)\). An example is given by \(A(x) = x_1 \log |x|^2 \) and \(f(x) = \chi_{\{1 < |x| < 2\}} \).

References

