<table>
<thead>
<tr>
<th>Title</th>
<th>A Note on Homomorphisms of C*-algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TAKAHASI, Sin-ei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 14: 23-24</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2953</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
A Note on Homomorphisms of C*-algebras

Sin-ei Takahasi*

J. Anderson [2] investigated the extension questions for arbitrary C*-algebras. Moreover H. Kim and Y. Kim [3] generalized some results in [2]. One of their results is the following: If \(f \) is a pure state on a unital C*-algebra \(A \) and \(G^+(f) \) commutes with every element of \(A \), then \(f \) is a homomorphism. Here \(G^+(f) \) denotes the set of all positive elements \(t \) of \(A \) such that \(f(t) = \|t\| = 1 \).

The purpose of this note is to generalize the above result. Our method is quite different from that given in [3]. In fact they have proved this by using the map: \(x \mapsto \alpha_x(f) = \inf \{ \|t x t^*\| : t \in G(f) \} \) which is considered in [2]. However we shall prove this result by considering the supports of states on C*-algebras.

Throughout the remainder of the note let \(A \) be a C*-algebra with an identity \(e \), \(B \) be a C*-subalgebra of \(A \) containing \(e \) and \(f \) be a state on \(A \). Also let \(L(f) \) be the left ideal associated with \(f \) and \(L^*(f) = \{ x \in A : x^* \in L(f) \} \). Furthermore let \(E(f) \) be the support of \(f \) in the second dual \(A^{**} \) of \(A \) and \(\overline{E(f)} \) be the closure of \(E(f) \). Actually \(\overline{E(f)} \) is the smallest closed projection majorizing \(E(f) \) (c.f. [1, Definition II. 11]). For arbitrary subsets \(X \) and \(Y \) of \(A \), let \(X \bowtie Y \) mean that \(xy = yx \) for all \(x \in X \) and \(y \in Y \).

Under the above notations we have the following statements.

(i) \(G^+(f) \bowtie B \) if and only if \(L(f) \bowtie L^*(f) \bowtie B \).

(ii) If \(L(f) \bowtie L^*(f) \bowtie B \), then \(\overline{E(f)} \bowtie B \).

(iii) If \(E(f) \bowtie B \) and \(f \) is a pure state, then \(f|B \) is a homomorphism.

In fact observe that \(\{ x \in A : e - x \in G^+(f) \} = \{ x \in L(f) \cap L^*(f) : 0 \leq x \leq e \} \).

Since \(e \in B \), (i) follows from the above equality. Now since \(\overline{E(f)} \) is closed, there exists a positive net \(\{ e_\lambda \} \subset A \) such that \(e_\lambda \leq L(f) \) in the weak*-topology of \(A^{**} \).

Note that \((e - e_\lambda) \overline{E(f)} = 0 \) and hence \(e - e_\lambda \in L(f) \cap L^*(f) \) for each \(\lambda \). Therefore if \(L(f) \bowtie L^*(f) \bowtie B \), then \(e_\lambda \bowtie B \) for each \(\lambda \) and so \(\overline{E(f)} \bowtie B \). Thus (ii) is proved. If \(f \) is a pure state, then \(E(f) \) is minimal and so \(E(f) x E(f) = f(x) E(f) \) for all \(x \in A^{**} \). Therefore we have that \(b^* b E(f) = b^* E(f) b E(f) = f(b^* b) E(f) \) and so \(f(b^* b) = f(b^*) f(b) \) whenever \(E(f) \bowtie B \) and \(b \in B \). This implies easily (iii).

The following result is our promised generalization of the result of H. Kim and Y. Kim.

Received February 19, 1982.
Research partially supported by the Grant-in-Aid for Scientific Research C-56540060 from the Ministry of Education.
* Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
Proposition. If $G^+(f) \supset B$ and if f is a pure state, then $f\{B$ is a homomorphism.

Proof. If $G^+(f) \supset B$, then $E(f) \supset B$ from (i) and (ii). Furthermore if f is a pure state, then $E(f)$ is a closed projection and hence $E(f) \supset B$ from the above argument. Therefore our result follows from the statement (iii).

References