タイトル
A Remark on the Littlewood Conjecture

著者
YABUTA, Kozo

引文
Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 14: 19-21

発行日
1982

URL
http://hdl.handle.net/10109/2952

権利
このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
A Remark on the Littlewood Conjecture

Kôzô Yabuta*

Recently McGehee, Pigno and Smith [1, 2] have solved affirmatively the Littlewood conjecture on the L^1 norm of exponential sums. In this short note we improve their method somewhat and obtain a somewhat better constant arising in the inequality in the conjecture. That is, we will show the following

Theorem 1. Let $r \in \{2, 3, \ldots\}$ and $b > 0$ such that $B(r, b) < 1$. Then it holds

\[(1) \quad (2\pi)^{-1} \int_0^{2\pi} |\sum_{j=1}^n c_j e^{i n_j x}| dx \geq A(r, b) \log (1 + (r-1)N)\]

for any integers $n_1 < n_2 < \cdots < n_N$ and complex numbers c_j with $|c_j| \geq 1 (j = 1, 2, \ldots, N)$. Here $B(r, b) = \sqrt{2br(\sqrt{r} + 1)}/(r-1)^2$ and $A(r, b) = (1 - B(r, b))(1 - e^{-b})/\log r$.

If we take $r = 90$ and $b = 1.7$, then $A(r, b) = 0.129590\cdots$. This number is almost optimal with respect to r and b. What is the best estimate in the inequality (1)? L^1 norm of the Dirichlet kernel is asymptotically equal to $\sqrt{2}/4 = 0.4049\cdots$. Is $\sqrt{2}/4 \log N$ the best one?

1. To prove Theorem 1 we follow McGehee, Pigno and Smith [1]. Z will denote the set of all integers and T the circle group, identified with $[0, 2\pi)$ with the normalized Haar measure $(2\pi)^{-1} dx$. Now let $r \in \{2, 3, \ldots\}$. For any $S = \{n_1 < n_2 < \cdots < n_N\} \subseteq Z$ we divide S as follows. $S_0 = \{n_1\}$, $S_1 = \{n_2 < \cdots < n_{r+1}\}$, $S_M = \{n_L < \cdots < n_N\}$ so that $S = \bigcup_{j=0}^M S_j$, $\# S_j = r^j$ ($j = 0, 1, \ldots, M - 1$) and $\# S_M \leq r^M$, where M is the integer satisfying $M < \log(1 + (r-1)N)/\log r \leq M + 1$, $L = (r^M - 1)/(r-1)$ and $\# S_j$ denotes the cardinal number of S_j. Then we have the following lemma.

Lemma 1. Let $r \in \{2, 3, \ldots\}$, $b > 0$ and $c = 1 - e^{-b}$. Then for any $S = \{n_1, n_2, \ldots, n_N\} \subseteq Z$ and $a_n \in \mathbb{C}$ with $|a_n| = 1$ ($n \in S$), there exists an $F \in L^\infty(T)$ with $|F| \leq 1$ such that

\[(2) \quad |ca_n - r^j \hat{F}(n)| \leq cB(r, b), \quad n \in S_j (j = 0, 1, \ldots, M - 1),\]

\[(3) \quad ca_n = \# S_M \hat{F}(n), \quad n \in S_M.\]
where \(\tilde{F}(n) \) is the \(n \)-th Fourier coefficient of \(F \).

PROOF. We introduce the following as in [1]. For \(f \in L^2(T) \) we set \(P_n(f) = \sum_{k \leq n} f(k)e^{ikx} \) and \(Q_n(f) = \sum_{k > n} f(k)e^{ikx} \). Now put \(f_j(x) = \sum_{k \in S_j} a_k(n(S_j))^{-1}e^{inx} \), \(F_0 = cf_0 \), and \(F_k = F_{k-1} \times \exp(-bh_k) + cf_k \) \((k=1, \ldots, M)\). Finally put \(F = F_M \). Then, arguing as in [1, p. 615] we get \(|F| \leq 1 \). We use here, however, the inequality \(\exp(-bx) + cx \leq 1 \) \((0 \leq x \leq 1)\) in place of the inequality \(\exp(-x/4) + x/5 \leq 1 \) \((0 \leq x \leq 1)\). Clearly \(\tilde{F}(n) = c\tilde{f}_M(n) = c(n(S_M))^{-1}a_n \) \((n \in S_M)\). For \(n \in S_j \) \((j=0, 1, \ldots, M-1)\), we get

\[
|c^{r-1}a_n - \tilde{F}(n)| = \sum_{k=j}^{M-1} \left| (1 - \exp(-bh_{k+1})) F_k \right| (n).
\]

If we put \(m_j = \min S_j \), we can replace \(F_k \) by \(P_{m_j}(F_k) \) and arguing as in [1, p. 615] we get

\[
D_{j,k}(n) = \left| \left(1 - \exp(-bh_{k+1}) \right) F_k \right| (n) |
\leq \sqrt{2}bh_{k+1} \times c \sum_{q=j}^{k} \| P_{m_j}(f_q) \|_2
= \sqrt{2}bc r^{(k+1)/2} \sum_{q=j}^{k} r^{-q/2}.
\]

Hence

\[
|c^{r-1}a_n - \tilde{F}(n)| \leq \sum_{k=j}^{M-1} D_{j,k}(n) \leq \sqrt{2}bc r^{1-(r-1)/(r+1)}(r-1)^2,
\]

which completes the proof of the lemma.

PROOF OF THE theorem. Let \(f(x) = \sum_{j=1}^{N} c_j e^{inx} \). Taking \(a_n = c_j |c_j| \) and applying Lemma 1, we can choose an \(F \in L^\infty \) with \(\| F \|_\infty \leq 1 \) such that

\[
|\tilde{F}(n)| - c(n(S_j))^{-1} |\tilde{f}(n)| \leq cB(r, b)(n(S_j))^{-1} |\tilde{f}(n)| \quad (n \in S_j),
\]

\(j = 0, 1, \ldots, M \). Hence

\[
\sum_{j=1}^{\infty} \text{Re} \tilde{F}(n) \tilde{f}(n) \geq c(1 - B(r, b))(M + 1).
\]

Therefore, if \(B(r, b) < 1 \), we get

\[
\| f \|_1 \geq \left| \sum_{j=1}^{\infty} \text{Re} \tilde{F}(n) \tilde{f}(n) \right| \geq c(1 - B(r, b)) \log (1 + (r-1)N) / \log r.
\]

2. If we apply Lemma 1 to the generalization of Hardy's inequality in [1, Theorem 2], we can take \(C = c(1 - B(r, b))(r-1) \). That is, for any \(S = \{ n_1 < n_2 < \cdots \} \subset \mathbb{Z} \) and any Borel measure \(\mu \) on \(T \) with support \(\mu \subset S \), we have

\[
\sum_{j=1}^{\infty} |\mu(n_j)|/j \leq c(1 - B(r, b))(r-1)^{-1} \| \mu \|.
\]

If \(r = 3 \) and \(b = 0.16 \), the constant in the above inequality is equal to 25.219..., and this is almost optimal with respect to the choice of \(r \) and \(b \). What is the best possible constant in the generalized Hardy inequality? Is it \(\pi \)?
References
