<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Continuous Linear Functional on Closed Two-sided Ideals of C*-algebras</td>
</tr>
<tr>
<td>Author(s)</td>
<td>TAKAHASI, Sin-ei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 12: 1-3</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2941</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
Continuous Linear Functional on Closed
Two-sided Ideals of C*-algebras

Sin-ei TAKAHASI*

G. K. Pedersen [2] have proved that any positive linear functional on any order-related C*-subalgebra of a C*-algebra A has a unique norm-preserving extension to A. In [3], we showed the converse of this result and hence obtained a characterization of order-related C*-subalgebras. We also showed that any continuous linear functional on every order-related C*-subalgebra of A has a unique norm-preserving extension to A.

In this note, we state a characterization of closed two-sided ideals I of A (opposed to order-related C*-subalgebras) in terms of norm-preserving extension of special kind of linear functionals on I. As an application of this characterization, we further show that a C*-algebra A is dual if and only if the Dixmier's decomposition of any element of the third dual space of A^{***} of A is orthogonal.

Throughout this note, let A be a C*-algebra and M its enveloping von Neumann algebra. We consider A as lying in M under the canonical embedding. If B is a C*-subalgebra of A, then any increasing approximate identity of B converges ultraweakly to a unique projection E_B in M, and E_B said to be the support of B. Set $A(E_B) = \{x \in A : xE_B = E_Bx = x\}$. Then a C*-subalgebra B of A is order-related if and only if $B = A(E_B)$. Also E_B is central provided B is a two-sided ideal of A.

Now our main result is the following

Theorem 1. In order that a C*-subalgebra B of A to be a two-sided ideal of A it is necessary and sufficient that $\|f + g\| = \|f\| + \|g\|$ for any continuous linear functionals f and g on A with $\|f|B\| = \|f\|$ and $g|B = 0$.

Proof. Let E_B be the support of B in M. Suppose first that B is a two-sided ideal of A and let f, g be continuous linear functionals on A such that $\|f|B\| = \|f\|$ and $g|B = 0$. Set $h = f + g$. Since E_B is central, $\|h\| = \|E_B \cdot h\| + \|(1 - E_B) \cdot h\|$ by means of the enveloping polar decomposition of h (cf. [1, 12, 2.7]). Note that $E_B \cdot h$ and f are norm-preserving extensions of $f|B$. Then $E_B \cdot h = f$ and hence $(1 - E_B) \cdot h = g$ from [3, Theorem 2]. Thus the necessity is proved.

Assume next that $\|f + g\| = \|f\| + \|g\|$ for any continuous linear functionals

Received February 22, 1980.

* Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Ibaraki 310, Japan.
We claim that B is order-related. In fact, let ϕ be any continuous linear functional on B and f, g be norm-preserving extensions of ϕ to A. Set $h = f - g$. Then $h|B = 0$ and $\|f|B\| = \|g\|$. By the assumption, $\|f\| = \|g\| + \|h\|$ and so $h = 0$. In other word, ϕ has a unique norm-preserving extension to A. Therefore B is order-related from [3, Theorem 1].

Thus, to show that B is a two-sided ideal of A, we only show E_B is central. Actually, let f be any positive linear functional on A and set

$$f_n = E_B \cdot f \cdot E_B,$$

$$f_s = (1 - E_B) \cdot f \cdot E_B + E_B \cdot f \cdot (1 - E_B) + (1 - E_B) \cdot f \cdot (1 - E_B).$$

Then f_n is positive and so $E_{f_n} \leq E_B$. Here E_{f_n} denotes the support of f_n in M. Obviously $f = f_n + f_s$ and $f_s|B = 0$. We also have, from [1, 2.1.5],

$$\|f_n\| = \|f(E_B)\| = \lim_{\lambda} f(b_\lambda) = \lim_{\lambda} f_n(b_\lambda) = \|f_n|B\|,$$

where $\{b_\lambda\}$ is an increasing approximate identity of B. By the assumption, $\|f\| = \|f_n\| + \|f_s\|$. This equality implies that f_s is also positive. Therefore $E_{f_s} \leq 1 - E_B$ because $f_s(E_B) = 0$. We thus obtain that

$$g(xE_B) = g_n(xE_B) + g_s(xE_B) = g_n(x)$$

$$= g_n(E_Bx) + g_s(E_Bx)$$

$$= g(E_Bx)$$

for all positive linear functional g on A and all $x \in A$. In other word, E_B is central and the sufficiency is proved.

REMARK. As be seen in the above proof, if B is a closed two-sided ideal of A, then for any continuous linear functional h on A, there exist unique continuous linear functionals f and g on A such that $h = f + g$, $\|f|B\| = \|f\|$, $g|B = 0$ and $\|h\| = \|f\| + \|g\|$.

Let R be a C^*-subalgebra of M containing A. For each continuous linear functional f on R, we denote by $N_R(f)$ a unique ultraweakly continuous extension of $f|A$ to R and let $S_R(f) = f - N_R(f)$. We then have the following

COROLLARY 2. In order that A to be a two-sided ideal of R, it is necessary that $\|f\| = \|N_R(f)\| + \|S_R(f)\|$ for any continuous linear functional f on R and sufficient that $\|f\| = \|N_R(f)\| + \|S_R(f)\|$ for any positive linear functional f on R.

PROOF. Let f be a continuous linear functional on R. Observe that $\|N_R(f)\| = \|f|A\| = \|N_R(f)|A\|$ and $S_R(f)|A = 0$. Then from Theorem 1, $\|f\| = \|N_R(f)\| + \|S_R(f)\|$ whenever A is a two-sided ideal of R.

Suppose next that $\|f\| = \|N_R(f)\| + \|S_R(f)\|$ for positive linear functional f
on R. By [3, Corollary 5], A is an order-related C^*-subalgebra of R. Then we have only to show that E_A is central in the enveloping von Neumann algebra of R. Let f be any positive linear functional on R. Then $N_R(f)$ is also positive and

$$N_R(f)(E_A) = \lim N_R(f)(a_\lambda) = \lim f(a_\lambda) = \|f\| A = \|N_R(f)\|, \text{ where } \{a_\lambda\} \text{ is an increasing approximate identity of } A.$$

Then $E_{N_R(f)} \leq E_A$. Since $N_R(f)$ is positive and $f = \|N_R(f)\| + S_R(f)$, $S_R(f)$ is also positive. Now $E_{S_R(f)} \leq 1 - E_A$ because $S_R(f)|A = 0$. Therefore, after the manner of the proof of Theorem 1, we obtain that E_A is central and the proof is complete.

We now consider the dual space A^* of A as lying in the third dual space A^{***} of A under the canonical embedding. Let $A^c = \{F \in A^{***} : F(x) = 0 \text{ if } x \in A\}$.

Corollary 3. The following statements are equivalent:

(a) A is a dual algebra.

(b) A^{***} is isometrically isomorphic to $A^* \oplus A^c$.

Proof. A^{***} is always isomorphic to $A^* \oplus A^c$ as vector spaces from the Dixmier’s theorem. Identifying A^{**} and M, the corollary follows immediately from [4, Theorem 5.1] and Corollary 2.

References

