<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>On Certain Connected Submanifolds of Euclidean Sphere</td>
</tr>
<tr>
<td>Author(s)</td>
<td>HATSUSE, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 10: 29-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2892</td>
</tr>
<tr>
<td>Rights</td>
<td>このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。</td>
</tr>
</tbody>
</table>

お問合せ先
茨城大学学術企画部学術情報課（図書館）情報支援係
http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
On Certain Connected Submanifolds of Euclidean Sphere

Kohei HATSUSE*

Let \bar{M}^m be a simply connected, complete Riemannian manifold of non-positive constant curvature, that is, a Euclidean space E^m or a hyperbolic space H^m. Let M^n, $n \geq 2$, be a differentiable manifold. When f is an immersion of M^n into \bar{M}^m, we can define a function L_p on M^n by

$$L_p(x) = d(p, f(x)) \quad x \in M^n,$$

where d is the distance function in \bar{M}^m. For almost all $p \in \bar{M}^m$, L_p is a Morse function on M^n. Nomizu and Rodriguez [5] proved the following

Theorem A. Let M^n be a connected, complete Riemannian manifold isometrically immersed into E^m. If every Morse function L_p on M^n has index 0 or n at any of its critical points, then M^n is imbedded as a Euclidean n-subspace E^n or a Euclidean n-sphere S^n.

This theorem includes that if M^n is compact such that every Morse function L_p has exactly two critical points, then M^n is imbedded as a Euclidean n-sphere S^n. Cecil [2] proved the following

Theorem B. Let M^n be a connected, compact manifold immersed into H^m. If every Morse function L_p on M^n has exactly two critical points, then M^n is imbedded as a metric n-sphere S^n.

On the other hand, the author investigated in [3] connected, compact submanifolds M^n of E^m such that $C_n(L_p)=1$ or $C_0(L_p)=1$ for all Morse functions L_p on M^n, where $C_k(L_p)$ is the number of critical points of L_p of index k.

In this note, we deal with connected submanifolds M^n of a Euclidean sphere S^m.

We shall mean C^∞ differentiable by "differentiable" and an $n(\geq 2)$-dimensional differentiable manifold M^n by a manifold M^n.

1. Preliminaries. Let M^n be a connected manifold. Let f be an immersion of M^n into a Euclidean m-sphere S^m about the origin of E^{m+1}, $m \geq n+1$. Since f induces a Riemannian metric on M^n, M^n satisfies the second axiom of countability ([4], p. 271). Therefore $K = \{ y \in S^m; y = f(x) \text{ or } -f(x) \text{ for } x \in M^n \}$

Received February 15, 1978.

* Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Japan.
has measure zero. For a point \(p \in S^m - K \), we define a function \(L_p \) on \(M^n \) by
\[
L_p(x) = d(p, f(x)) \quad x \in M^n,
\]
the distance in \(S^m \) from \(p \) to \(f(x) \). If \(S^m \) is a unit sphere, then a geodesic \(c(s) \) in \(S^m \), parametrized by arc length \(s \), such that \(c(0) = y \) and \(\dot{c}(0) = e \) is given by \(c(s) = y \cos s + e \sin s \). This implies
\[
\cos L_p(x) = \langle p, f(x) \rangle,
\]
where \(\langle , \rangle \) is the Euclidean inner product in \(E^{m+1} \). Therefore \(x \in M^n \) is a critical point of \(L_p \) if and only if \(p = f(x) \cos L_p(x) + e \sin L_p(x) \) and \(e \) is a unit vector normal to \(f(M^n) \) at \(f(x) \).

We denote by \(\mathbb{N}(M) \) the normal bundle to \(M^n \). The exponential mapping \(\exp: \mathbb{N}(M) \to S^m \) is given by \(\exp(x, se) = f(x) \cos s + e \sin s \) for \((x, se) \in \mathbb{N}(M) \). If \(p = \exp(x, se) \) and the Jacobian \(\exp_\ast \) of \(\exp \) has nullity \(k > 0 \) at \((x, se)\), then we shall call \(p \) a focal point of \((M^n, x)\) of multiplicity \(k \). For \((x, e) \in \mathbb{N}(M)\), we denote by \(A_e \) a symmetric endomorphism of the tangent space \(T_x M^n \) which corresponds to the second fundamental form of \(M^n \).

We assume hereafter \(S^m \) is a unit sphere.

Lemma 1. A point \(p = \exp(x, s_0 e) \), \(0 < s_0 < \pi \), is a focal point of \((M^n, x)\) of multiplicity \(k \) if and only if \(\cot s_0 = \lambda \) for an eigenvalue \(\lambda \) of \(A_e \) of multiplicity \(k \).

Proof. Let \((u^1, \ldots, u^n, U)\) be a coordinate system at \(x \in M^n \). Let \(e_1, \ldots, e_{m-n} \) be orthonormal vector fields normal to \(f(U) \) such that \(e_1(x) = e \). If \(x' \in U \) and \(v \) is a vector normal to \(f(U) \) at \(f(x') \), then we have
\[
v = s\left(\sqrt{1 - \sum_{i=2}^{m-n} (t^i)^2 e_i(x') + t^2 e_2(x') + \cdots + t^{m-n} e_{m-n}(x')}\right).
\]
This implies \((u^1, \ldots, u^n, s, t^2, \ldots, t^{m-n})\) are coordinates at \((x, s_0 e)\) in \(\mathbb{N}(M) \). By the definition of mapping \(\exp \), we obtain
\[
\exp_\ast(\partial/\partial s)_{(x, s_0 e)} = -f(x) \sin s_0 + e \cos s_0
\]
and
\[
\exp_\ast(\partial/\partial t^i)_{(x, s_0 e)} = e_i(x) \sin s_0.
\]
Let \(X = \sum_{i=1}^n \xi^i(\partial/\partial u^i)_{(x, s_0 e)} \). Since \(T_{(x, s_0 e)} \mathbb{N}(M) = T_x M^n \oplus E^{m-n} \), there exists \(Y \in T_x M^n \) and \((Y, 0) = X \). We assume the vector field \(e_1 \) normal to \(f(U) \) such that \(\nabla_{f_\ast(Y)} e_1 = -f_\ast(A_e Y) \), where \(\nabla \) is the Riemannian connection in \(S^m \). We denote by \(V(s) \) an infinitesimal variation of geodesic \(c(s) = f(x) \cos s + e \sin s \), \(0 \leq s \leq s_0 \), such that \(V(0) = f_\ast(Y) \) and \(\nabla_\ast V = -f_\ast(A_e Y) \). Then we have
\[
\exp_\ast X = V(s_0).
\]
Therefore \(\exp_X X \) is the parallel displacement of \(f_*(Y) \cos s_0 - f_*(A_\varepsilon Y) \sin s_0 \) along the geodesic \(c(s) \) from \(f(x) \) to \(p \). This implies \(\exp_X X = 0 \) if and only if \(A_\varepsilon Y = Y \cot s_0 \), that is, \(\cot s_0 \) is an eigenvalue of \(A_\varepsilon \).

It is obvious that

\[
\exp_X X' = 0
\]

for \(X' \in T_{(x, \omega_0)} S^2 \) only if \(X' = \sum \xi_j (\partial/\partial u^j)_{(x, \omega_0)} \). Thus we have proved the lemma.

Lemma 2. Let \(p \in S^m - K \) and \(x \in M^n \). Then

1. \(x \) is a degenerate critical point of \(L_p \) if and only if \(\cot L_p(x) = \lambda \) for an eigenvalue \(\lambda \) of \(A_\varepsilon \).
2. If \(x \) is a non-degenerate critical point of \(L_p \), then the index of \(L_p \) at \(x \) is equal to the number of eigenvalues \(\lambda \) of \(A_\varepsilon \) such that \(\cot L_p(x) < \lambda \), counting multiplicities.

Proof. We choose a coordinate system \((u^1, \ldots, u^n, U)\) at \(x \in M^n \) such that \(\{(\partial/\partial u^1)_x, \ldots, (\partial/\partial u^n)_x\} \) is an orthonormal basis of \(T_x M^n \). We put \(y = f(x') \) for \(x' \in U \). Then we have

\[
- \frac{\partial^2 L_p}{\partial u^i \partial u^j} \sin L_p(x') - \frac{\partial L_p}{\partial u^i} \frac{\partial L_p}{\partial u^j} \cos L_p(x')
\]

\[
= \langle p, \frac{\partial^2 y}{\partial u^i \partial u^j} \rangle
\]

from \(\cos L_p(x') = \langle p, y \rangle \). Therefore if \(x \) is a critical point of \(L_p \), then

\[
- \frac{\partial^2 L_p}{\partial u^i \partial u^j}(x) \sin L_p(x)
\]

\[
= \langle p, \frac{\partial^2 y}{\partial u^i \partial u^j}(x) \rangle
\]

\[
= \langle f(x), \frac{\partial^2 y}{\partial u^i \partial u^j}(x) \rangle \cos L_p(x) + \langle e, \frac{\partial^2 y}{\partial u^i \partial u^j}(x) \rangle \sin L_p(x),
\]

because \(p = f(x) \cos L_p(x) + e \sin L_p(x) \). Since \(\langle y, \partial y/\partial u^i \rangle = 0 \), we have

\[
\langle f(x), \frac{\partial^2 y}{\partial u^i \partial u^j}(x) \rangle = - \delta_{ij}.
\]

On the other hand, if we write \(A_\varepsilon (\partial/\partial u^j)_x = \sum_{i=1}^n A_{\varepsilon ij}(x) (\partial/\partial u^i)_x \), then we have easily that

\[
\langle e, \frac{\partial^2 y}{\partial u^i \partial u^j}(x) \rangle = A_{\varepsilon ij}(x).
\]

Therefore we obtain
that is, the Hessian H of L_p at x is given by

$$H(X, Y) = \langle (I \cot L_p(x) - A_x)X, Y \rangle$$

$X, Y \in T_xM^n$. Here I denotes the identity mapping of T_xM^n into itself. Thus the lemma follows.

By virtue of Lemmas 1 and 2, L_p is a Morse function on M^n for almost all $p \in S^n - K$. Furthermore, Lemmas 1 and 2 show the following

Theorem 1. (Index theorem for L_p) For $p \in S^n - K$, the index of L_p at a non-degenerate critical point $x \in M^n$ is equal to the number of focal points of (M^n, x) which lie on the minimizing geodesic $c(s) = f(x)\cos s + e\sin s, 0 \leq s \leq L_p(x)$, from $f(x)$ to p. Each focal point is counted with its multiplicity.

Lemma 3. If $x \in M^n$ is a non-degenerate critical point of L_p of index k, then there exist sequences $\{x_a\}$ of points in M^n and $\{p_a\}$ of points in $S^n - K$ such that

1. $\{x_a\}$ and $\{p_a\}$ converge to x and p respectively,
2. L_{p_a} is a Morse function on M^n and x_a is a critical point of L_{p_a} of index k.

2. Main theorems

Theorem 2. Let M^n be a connected, complete Riemannian manifold isometrically immersed into S^m. If every Morse function L_p on M^n has index 0 or n at each critical point of it, then M^n is imbedded as a small n-sphere S^n.

Proof. Let $x \in M^n$ and let e be a unit vector normal to $f(M^n)$ at $f(x)$. We assume λ is the largest eigenvalue of A_e. If there exists the next largest eigenvalue μ of A_e, then $p = f(x)\cos L_p(x) + e\sin L_p(x), \lambda > \cot L_p(x) > \mu$, is not a focal point of (M^n, x) from Lemma 1. Therefore L_p has x as a non-degenerate critical point. The index k of L_p at x is equal to the multiplicity of eigenvalue λ of A_e from Theorem 1. There exists, from Lemma 3, a Morse function L_q on M^n which has a critical point x' of index k. By the assumption, L_q has index 0 or n at x'. And so we have $k = n$ since k cannot be 0. This shows that A_e has only one eigenvalue λ of multiplicity n, which implies M^n is a totally umbilical submanifold of E^{m+1}, through the immersion f. Therefore M^n is imbedded into E^{m+1} as a Euclidean n-sphere ([1], p. 231). Hence M^n is imbedded into S^m as a small n-sphere S^n.

Corollary. Let M^n be a connected, compact manifold immersed into S^m. If every Morse function L_p on M^n has exactly two critical points, then M^n is imbedded as a small n-sphere S^n.

Proof. Since M^n is compact, a Morse function L_p on M^n attains to the
maximal value at one critical point and the minimal value at the other. Therefore the corollary follows.

Theorem 3. Let M^n be a connected, compact manifold immersed into S^m. Assume that

1. there exists an umbilical point $x \in M^n$,
2. $C_n(L_p) = 1$ for every Morse function L_p on M^n.

Then M^n is imbedded as a small n-sphere S^n.

Proof. If $x \in M^n$ is an umbilical point, then we have $A_e = \lambda(e)I$ for any vector e normal to $f(M^n)$ at $f(x)$. Let e_1, \ldots, e_{m-n} be orthonormal vectors normal to $f(M^n)$ at $f(x)$. Then, from Lemma 1, only one focal point p_i of (M^n, x) lies on each geodesic $c_i(s) = f(x) \cos s + e_i \sin s$, $0 \leq s < \pi$, where $1 \leq i \leq m - n$. The focal point p_i is given by $p_i = f(x) \cos L_{p_i}(x) + e_i \sin L_{p_i}(x)$ and cot $L_{p_i}(x) = \lambda(e_i)$. For a point $p = f(x) \cos L_p(x) + e_i \sin L_p(x)$ such that $L_{p_i}(x) < L_p(x) < \pi$, x is a non-degenerate critical point of L_p of index n from Theorem 1. There exist sequences $\{x_a\}$ of points in M^n and $\{p_a\}$ of points in $S^m - K$ as in Lemma 3. Since $C_n(L_{p_a}) = 1$ from (2), each Morse function L_{p_a} on M^n attains to the maximal value at x_a. Therefore

$$L_p(x) = \lim_{a \to x} L_{p_a}(x_a) \geq \lim_{a \to x} L_{p_a}(x') = L_p(x')$$

for all $x' \in M^n$.

Let $\hat{c}_i(s) = f(x) \cos s - e_i \sin s$, $0 \leq s < \pi$. Then, from $\lambda(-e_i) = -\lambda(e_i)$, the antipodal point $-p_i$ of p_i is only one focal point of (M^n, x) along the geodesic $\hat{c}_i(s)$. Therefore if $q = f(x) \cos L_q(x) - e_i \sin L_q(x)$ such that $L_{-p_i}(x) < L_q(x) < \pi$, then L_q attains to the maximal value at x. We have

$$L_{-q}(x') + L_{-q}(x') = \pi$$

for $x' \in M^n$. Hence L_{-q} attains to the minimal value at x. The point $-q$ can be written as $-q = f(x) \cos L_{-q}(x) + e_i \sin L_{-q}(x)$ such that $0 < L_{-q}(x) < L_p(x)$. Thus each L_{p_i} is a constant function on M^n, and hence there exists in E^{m+1} a linear subvariety E^m_1 perpendicular to p_i such that $f(M^n) \subseteq E^m_1$. Since e_1, \ldots, e_{m-n} are orthonormal, p_1, \ldots, p_{m-n} are linearly independent. Therefore $E^m_1 \cap \cdots \cap E^m_{m-n}$ is a linear subvariety E^{m+1} in E^{m+1}. We know that $S^m \cap E^{m+1}$ is a Euclidean n-sphere S^n. The mapping $f : M^n \to S^n$ is an immersion. Since S^n is simply connected from $n \geq 2$, f is a diffeomorphism. Therefore M^n is imbedded as a small n-sphere S^n.

Theorem 4. Let M^n be a connected, compact manifold immersed into S^m. Assume that

1. there exists an umbilical point $x \in M^n$,
2. $C_0(L_p) = 1$ for every Morse function L_p on M^n.

Then M^n is imbedded as a small n-sphere S^n.

Proof. If $x \in M^n$ is an umbilical point, then we have $A_e = \lambda(e)I$ for a unit vector e normal to $f(M^n)$ at $f(x)$. Therefore, from Lemma 1, $p' = f(x) \cos L_p(x) + e \sin L_p(x)$ such that $\cot L_p(x) = \lambda(e)$ is only one focal point of (M^n, x) along a geodesic $c(s) = f(x) \cos s + e \sin s$, $0 \leq s < \pi$. For a point $p = f(x) \cos L_p(x) + e \sin L_p(x)$ such that $0 < L_p(x) < L_p(x)$, x is a non-degenerate critical point of L_p of index 0 from Theorem 1. There exist sequences $\{x_a\}$ of points in M^n and $\{p_a\}$ of points in $S^m - K$ as in Lemma 3. Since $C_0(L_{p_a}) = 1$ from (2), each Morse function L_{p_a} attains to the minimal value at x_a. Therefore

$$L_p(x) = \lim_{a} L_{p_a}(x_a) \leq \lim_{a} L_{p_a}(x') = L_p(x')$$

for all $x' \in M^n$. Similarly, if $q = f(x) \cos L_q(x) - e \sin L_q(x)$ such that $0 < L_q(x) < L_{-q}(x)$, then L_q attains to the minimal value at x, which implies L_{-q} attains to the maximal value at x. Thus L_p is a constant function on M^n. Therefore we can find a small n-sphere S^n such that $f(M^n) \subset S^n$. Since $f: M^n \to S^n$ is an immersion and S^n is simply connected from $n \geq 2$, M^n is imbedded as a small n-sphere S^n.

References

