図書館

Title
On Certain Compact Submanifolds of Euclidean Space

Author(s)
HATSUSE, Kohei

Citation
Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 9: 55-59

Issue Date
1977

URL
http://hdl.handle.net/10109/2885

Rights
このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On Certain Compact Submanifolds of Euclidean Space

Kohei Hatsuse

Let M^n be a differentiable manifold. When f is an immersion of M^n into a Euclidean space E^m, we can define a function L_p on M^n by

$$L_p(x) = <p - f(x), p - f(x)> \quad x \in M^n$$

where $< , >$ denotes the Euclidean inner product in E^m. For almost all points $p \in E^m$, L_p is a Morse function on M^n. Nomizu and Rodriguez [2] proved the following

Theorem. Let $M^n, n \geq 2$, be a compact connected manifold immersed into E^m. If every Morse function L_p on M^n has exactly two critical points, then M^n is imbedded as a Euclidean n-sphere S^n.

If a Morse function L_p on M^n has exactly two critical points, then both of the numbers $C_0(L_p)$ of critical points of index zero and $C_n(L_p)$ of critical points of index n are equal to one. The purpose of this note is to investigate M^n such that $C_0(L_p) = 1$ or $C_n(L_p) = 1$ for every Morse function L_p on M^n.

We shall mean C^∞ differentiable by "differentiable" and an $n(\geq 2)$-dimensional differentiable manifold M^n by a manifold M^n.

1. Lemmas

The notions and notations will follow from Milnor [1]. Let $f: M^n \rightarrow E^m$ be an immersion and let $\perp(M)$ be the normal bundle to M^n. If L_p is a Morse function on M^n, then $p \in E^m$ is not a focal point of M^n. Let $x \in M^n$ and let $e(x) \in \perp(M)$, that is, a vector normal to $f(M^n)$ at $f(x)$. We denote by $A_{e(x)}$ a symmetric linear transformation of a tangent space T_xM^n into itself which corresponds to the second fundamental form of M^n. If x is a critical point of Morse function L_p on M^n and if $p = f(x) + te(x)$, $t > 0$, then the index at x is equal to the number of eigenvalues α of $A_{e(x)}$ such that $0 < 1/\alpha < t$, counting multiplicities.

We shall identify $x \in M^n$ with $f(x)$ if there is no confusion. We begin with the following

Lemma 1. Let M^n be a manifold immersed into E^{n+1}. Then M^n is convex if and only if there exists a unit vector $e(x)$ normal to M^n at each $x \in M^n$ and

Received January 20, 1977.

* Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Japan.
for all \(t > 0 \) where \(p(t, x) = x + te(x) \).

Proof. Let \(x \in M^n \). If \(M^n \) is convex then there exists a unit vector \(e(x) \) normal to \(M^n \) at \(x \) such that \(\langle e(x), y - x \rangle \leq 0 \) for all \(y \in M^n \). Let \(t > 0 \) then

\[
L_{p(t,x)}(y) - L_{p(t,x)}(x) = 2t \langle e(x), y - x \rangle + \langle x - y, x - y \rangle \geq 0.
\]

Therefore \(L_{p(t,x)}(x) \leq L_{p(t,x)}(y) \). Conversely, we suppose that there exists a unit vector \(e(x) \) normal to \(M^n \) and \(L_{p(t,x)}(x) \leq L_{p(t,x)}(y) \) for all \(t > 0 \). Then \(\langle e(x), y - x \rangle \leq 0 \) for all \(y \in M^n \). Because, if there exists a point \(y_0 \in M^n \) such that \(\langle e(x), y_0 - x \rangle > 0 \), then

\[
L_{p(t,x)}(x) > L_{p(t,x)}(y_0)
\]

for \(t > \frac{\langle x - y_0, x - y_0 \rangle}{2 \langle e(x), y_0 - x \rangle} \). Therefore \(M^n \) is convex.

Lemma 2. Let \(M^n \) be a convex manifold immersed into \(E^{n+1} \). Let \(e(x) \) be a unit vector normal to \(M^n \) at \(x \) as in Lemma 1. Then every eigenvalue of \(A_{e(x)} \) is non-positive.

Proof. The mapping \(e: M^n \ni x \mapsto e(x) \in \perp(M) \) defines a differentiable vector field along \(M^n \). We suppose that \(A_{e(x)} \) has a positive eigenvalue. Let \(\alpha \) be the largest positive eigenvalue of \(A_{e(x)} \) whose multiplicity is \(k \), and let \(\beta \) be the next largest positive eigenvalue of \(A_{e(x)} \). Take \(t > 0 \) such that \(1/\alpha < t < 1/\beta \) (if \(\alpha \) is the only positive eigenvalue, just considered \(1/\alpha < t \)). Then, from Lemma of [2], there exists a point \(x' \in M^n \) and it is a critical point of a Morse function \(L_{p(t,x)} \) on \(M^n \) of index \(k \). On the other hand, Lemma 1 implies the index at \(x' \) is zero. Therefore Lemma is proved.

Lemma 3. Let \(M^n \) be a compact connected manifold immersed into \(E^{n+1} \). If \(M^n \) is convex then \(M^n \) is diffeomorphic to \(n \)-sphere \(S^n \).

Proof. Since \(M^n \) is compact, there exists an open ball \(D \) of radius \(r \) about the origin of \(E^{n+1} \) such that \(M^n \subset D \). The boundary of \(D \) is an \(n \)-sphere \(S^n \). Every ray \(p(t, x) = x + te(x), t > 0 \), starting from \(x \in M^n \) meets \(S^n \) at only one point \(p(t(x), x) \). If we define a mapping \(\phi: M^n \rightarrow S^n \) by

\[
\phi(x) = p(t(x), x) \quad x \in M^n
\]

then \(\phi \) is differentiable since

\[
t(x) = -\langle e(x), x \rangle + \{r^2 - \langle x, x \rangle + \langle e(x), x \rangle^2 \}^{1/2}.
\]

We denote by \(\exp \) the exponential mapping of \(\perp(M) \) into \(E^{n+1} \) and denote by \(\pi \) the projection of \(\perp(M) \) into \(M^n \). Then, by the definition of \(\phi \), we obtain \(\phi(x) = \exp t(x)e(x) \). Let \((v^1, \ldots, v^{n+1}, U) \) be a cubical coordinate system centered
at $\phi(x)$ in E^{n+1} such that $U \cap S^n$ is an n-dimensional slice defined by $v^{n+1}=v^{n+1}(\phi(x))$. Let (u_1, \ldots, u_n, V) be a coordinate system at x in M^n such that $\phi(V) \subset U \cap S^n$. There exists a function u in $\mathbb{L}(M)$, and $u^1 \circ \pi, \ldots, u^n \circ \pi, u$ form a system of coordinates at $t(x)e(x)$. By virtue of Lemma 2, \exp is regular at $t(x)e(x)$. Therefore, ϕ is a univalent mapping of V into $U \cap S^n$, and $u^1 \circ \phi^{-1} = u^1 \circ \pi \circ \exp^{-1}|\phi(V)$ is a differentiable function of v^1, \ldots, v^n. This implies ϕ is an immersion. Consequently, ϕ is a diffeomorphism of M^n into S^n since S^n is simply connected when $n \geq 2$.

Lemma of Nomizu and Rodríguez [2] can be stated as in the following

Lemma ([2], p. 119). Let M^n be a manifold immersed into E^m. Let $p \in E^m$ and assume that L_p has a non-degenerate critical point $x \in M^n$ of index k. Then there exist sequences $\{x_\alpha\}$ of points in M^n and $\{p_\alpha\}$ of points in E^m such that

1. $\{x_\alpha\}$ and $\{p_\alpha\}$ converge to x and p respectively,
2. L_{p_α} is a Morse function on M^n, and x_α is a critical point of L_{p_α} of index k.

2. Theorems

Lemma 4. Let M^n be a manifold immersed into E^m, $m > n + 1$. Let $x \in M^n$ and let $e(x)$ be a unit vector normal to M^n at x. We put $p(t, x)=x+te(x)$ when $t > 0$ and $q(s, x)=x+se(x)$ when $s < 0$. Then M^n belongs to a linear variety E^{m-1} if one of the following properties holds for every unit normal vector $e(x)$ at x:

(a) $L_{p(t, x)}(x) \leq L_{p(t, x)}(y)$ for all $t > 0$.

(b) $L_{q(s, x)}(x) \leq L_{q(s, x)}(y)$ for all $s < 0$.

Proof. Let S be a set of all unit vectors $e(x)$ normal to M^n at x. Then S can be considered as a Euclidean $(m-n-1)$-sphere. We suppose that there exists a unit vector $e'(x)$ normal to M^n at x such that (a) does not hold for it. If we denote by B a set of such unit vectors $e'(x)$, then B is an open subset of S. Because, if B is not an open subset of S, there exists a sequence $\{e_\alpha(x)\}$ of unit vectors in $S-B$ which converges to a suitable $e'(x) \in B$. For each $e_\alpha(x)$, (a) holds. Therefore

$$L_{p'(t, x)}(x) = \lim_{\alpha} L_{p_{\alpha}(t, x)}(x) \leq \lim_{\alpha} L_{p_{\alpha}(t, x)}(y) = L_{p'(t, x)}(y)$$
for all $t > 0$ where $p'(t, x) = x + te'(x)$ and $p_\alpha(t, x) = x + te_\alpha(x)$. This contradicts $e'(x) \in B$.

When $e'(x) \in B$, (a) holds for $-e'(x)$ and hence $B \cong S$. Let $e(x)$ be a boundary point of B. Then there exists a sequence $\{e_\alpha(x)\}$ of unit vectors in B which converges to $e(x)$. For each $e_\alpha'(x)$, (b) holds. Therefore

$$L_{q(s, x)}(x) = \lim_{\mu} L_{q_\mu'(s, x)}(x)$$

$$\leq \lim_{\mu} L_{q_\mu'(s, x)}(y) = L_{q(s, x)}(y)$$

for all $s < 0$ where $q_\mu'(s, x) = x + se'_\mu(x)$. Since $B \cong S$, we obtain $e(x) \notin B$. These imply both of (a) and (b) hold for $e(x)$. Therefore

$$<e(x), y-x> = 0$$

for all $y \in M^n$. Thus M^n belongs to a linear variety E^{n-1} perpendicular to $e(x)$.

Theorem 1. Let M^n be a compact connected manifold immersed into E^m. Let $e(x) \in \perp(M)$ and let $\alpha_1, \ldots, \alpha_n$ be eigenvalues of $A_{e(x)}$. Assume that

1. $\alpha_i \alpha_j \geq 0$ ($i, j = 1, \ldots, n$) for every $e(x) \in \perp(M)$,

2. $C_0(L_p) = 1$ for every Morse function L_p on M^n.

Then M^n is diffeomorphic to n-sphere S^n.

Proof. Let $e(x) \in \perp(M)$ be a unit vector at $x \in M^n$. We suppose that eigenvalues $\alpha_1, \ldots, \alpha_n$ of $A_{e(x)}$ are non-positive. Let $t > 0$. Then x is a non-degenerate critical point of $L_{p(t, x)}$ of index zero. There exist sequences $\{x_\lambda\}$ of points in M^n and $\{p_\lambda\}$ of points in E^m as in Lemma of [2]. Since $C_0(L_{p_\lambda}) = 1$ from (2), Morse function L_{p_λ} attains to minimal value at exactly one point x_λ. Therefore

$$L_{p(t, x)}(x) = \lim_{\lambda} L_{p_\lambda}(x) \leq \lim_{\lambda} L_{p_\lambda}(y) = L_{p(t, x)}(y)$$

for all $t > 0$. From (1), this implies one of the properties (a) and (b) in Lemma 4 holds for every unit vector $e(x)$ normal to M^n. According to Lemma 4, M^n belongs to a linear variety E^{n+1}. When $M^n \subset E^{n+1}$, the properties (a) and (b) for every unit vector $e(x) \in \perp(M)$ imply M^n is immersed into E^{n+1} as a convex hypersurface from Lemma 1. Thus, from Lemma 3, M^n is diffeomorphic to n-sphere S^n.

Theorem 2. Let M^n be a compact connected manifold immersed into E^m. Let $e(x) \in \perp(M)$ and let $\alpha_1, \ldots, \alpha_n$ be eigenvalues of $A_{e(x)}$. We denote by N a set of $e(x) \in \perp(M)$ such that $\alpha_i \alpha_j > 0$ ($i, j = 1, \ldots, n$). Assume that

1. $\perp(M) = \overline{N}$,

2. $C_n(L_p) = 1$ for every Morse function L_p on M^n.

Then M^n is diffeomorphic to n-sphere S^n.

Proof. Let $e(x) \in \mathbb{L}(M)$ be a unit vector at $x \in M^n$. We suppose that eigenvalues $\lambda_1, \ldots, \lambda_n$ of $A_{e(x)}$ are positive. Let λ_1 be the smallest eigenvalue of $A_{e(x)}$. If $t > 1/\lambda_1$ then x is a non-degenerate critical point of $L_{p(t,x)}$ of index n. There exist sequences $\{x_\lambda\}$ of points in M^n and $\{p_\lambda\}$ of points in E^n as in Lemma of [2]. Since $C_n(L_{p_\lambda}) = 1$ from (2), Morse function L_{p_λ} attains to maximal value at exactly one point x_λ. Therefore

$$L_{p(t,x)}(x) = \lim_{\lambda} L_{p_\lambda}(x_\lambda) \geq \lim_{\lambda} L_{p_\lambda}(y) = L_{p(t,x)}(y)$$

and hence $<e(x), x - y> \leq 0$ for all $y \in M^n$. If $s < 0$ then we obtain

$$L_{q(s,x)}(x) - L_{q(s,x)}(y) = -2s <e(x), x - y> -<x - y, x - y> \leq 0$$

for all $y \in M^n$. By the definition of N, this implies one of the properties (a) and (b) in Lemma 4 holds for every unit vector $e(x) \in N$.

When $e(z) \in \mathbb{L}(M)$ is a unit vector at $z \in M^n$, there exists a sequence $\{\mu(x_\mu)\}$ of unit vectors in N which converges to $e(z)$. If (a) holds for all $\mu(x_\mu)$, then

$$L_{p(t,z)}(z) = \lim_{\mu} L_{p_\mu(t,x_\mu)}(x_\mu) \leq \lim_{\mu} L_{p_\mu(t,x_\mu)}(y) = L_{p(t,z)}(y)$$

for all $t > 0$ and $y \in M^n$ where $p_\mu(t,x_\mu) = x_\mu + t\mu(x_\mu)$. Similarly, if (b) holds for all $\mu(x_\mu)$ then (b) holds for $e(z)$. Thus one of the properties (a) and (b) in Lemma 4 holds for every unit vector $e(x)$ normal to M^n. According to Lemmas 1 and 4, M^n belongs to a linear variety E^{n+1}, and it is immersed into E^{n+1} as a convex hypersurface. Consequently, from Lemma 3, M^n is diffeomorphic to n-sphere S^n.

References
