<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>On Certain Compact Submanifolds of Euclidean Space</td>
</tr>
<tr>
<td>Author(s)</td>
<td>HATSUSE, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 9: 55-59</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2885</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
On Certain Compact Submanifolds of Euclidean Space

Kohei Hatsuse

Let M^n be a differentiable manifold. When f is an immersion of M^n into a Euclidean space E^m, we can define a function L_p on M^n by

$$L_p(x) = \langle p - f(x), p - f(x) \rangle \quad x \in M^n$$

where \langle , \rangle denotes the Euclidean inner product in E^m. For almost all points $p \in E^m$, L_p is a Morse function on M^n. Nomizu and Rodriguez [2] proved the following

Theorem. Let $M^n, n \geq 2$, be a compact connected manifold immersed into E^m. If every Morse function L_p on M^n has exactly two critical points, then M^n is imbedded as a Euclidean n-sphere S^n.

If a Morse function L_p on M^n has exactly two critical points, then both of the numbers $C_0(L_p)$ of critical points of index zero and $C_n(L_p)$ of critical points of index n are equal to one. The purpose of this note is to investigate M^n such that $C_0(L_p) = 1$ or $C_n(L_p) = 1$ for every Morse function L_p on M^n.

We shall mean C^∞ differentiable by "differentiable" and an $n(\geq 2)$-dimensional differentiable manifold M^n by a manifold M^n.

1. Lemmas

The notions and notations will follow from Milnor [1]. Let $f : M^n \rightarrow E^m$ be an immersion and let $\nabla(M)$ be the normal bundle to M^n. If L_p is a Morse function on M^n, then $p \in E^m$ is not a focal point of M^n. Let $x \in M^n$ and let $e(x) \in \nabla(M)$, that is, a vector normal to $f(M^n)$ at $f(x)$. We denote by $A_{e(x)}$ a symmetric linear transformation of a tangent space T_xM^n into itself which corresponds to the second fundamental form of M^n. If x is a critical point of Morse function L_p on M^n and if $p = f(x) + te(x), t > 0$, then the index at x is equal to the number of eigenvalues α of $A_{e(x)}$ such that $0 < 1/\alpha < t$, counting multiplicities.

We shall identify $x \in M^n$ with $f(x)$ if there is no confusion. We begin with the following

Lemma 1. Let M^n be a manifold immersed into E^{n+1}. Then M^n is convex if and only if there exists a unit vector $e(x)$ normal to M^n at each $x \in M^n$ and

Received January 20, 1977.

* Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Japan.
for all $t > 0$ where $p(t, x) = x + te(x)$.

Proof. Let $x \in M^n$. If M^n is convex then there exists a unit vector $e(x)$ normal to M^n at x such that $<e(x), y - x> \leq 0$ for all $y \in M^n$. Let $t > 0$ then

$$L_{p(t,x)}(x) = 2t <e(x), x - y> + <x - y, x - y> \geq 0.$$

Therefore $L_{p(t,x)}(x) \leq L_{p(t,x)}(y)$. Conversely, we suppose that there exists a unit vector $e(x)$ normal to M^n and $L_{p(t,x)}(x) \leq L_{p(t,x)}(y)$ for all $t > 0$. Then $<e(x), y - x> \leq 0$ for all $y \in M^n$. Because, if there exists a point $y_0 \in M^n$ such that $<e(x), y_0 - x> > 0$, then

$$L_{p(t,x)}(x) > L_{p(t,x)}(y_0)$$

for $t > <x - y_0, x - y_0>/2 <e(x), y_0 - x>$. Therefore M^n is convex.

Lemma 2. Let M^n be a convex manifold immersed into E^{n+1}. Let $e(x)$ be a unit vector normal to M^n at x as in Lemma 1. Then every eigenvalue of $A_{e(x)}$ is non-positive.

Proof. The mapping $e : M^n \ni x \mapsto e(x) \in \mathbb{L}(M)$ defines a differentiable vector field along M^n. We suppose that $A_{e(x)}$ has a positive eigenvalue. Let α be the largest positive eigenvalue of $A_{e(x)}$ whose multiplicity is k, and let β be the next largest positive eigenvalue of $A_{e(x)}$. Take $t > 0$ such that $1/\alpha < t < 1/\beta$ (if α is the only positive eigenvalue, just considered $1/\alpha < t$). Then, from Lemma of [2], there exists a point $x' \in M^n$ and it is a critical point of a Morse function $L_{p(t,x)}$ on M^n of index k. On the other hand, Lemma 1 implies the index at x' is zero. Therefore Lemma is proved.

Lemma 3. Let M^n be a compact connected manifold immersed into E^{n+1}. If M^n is convex then M^n is diffeomorphic to n-sphere S^n.

Proof. Since M^n is compact, there exists an open ball D of radius r about the origin of E^{n+1} such that $M^n \subset D$. The boundary of D is an n-sphere S^n. Every ray $p(t, x) = x + te(x)$, $t > 0$, starting from $x \in M^n$ meets S^n at only one point $p(t(x), x)$. If we define a mapping $\phi : M^n \rightarrow S^n$ by

$$\phi(x) = p(t(x), x) \quad x \in M^n$$

then ϕ is differentiable since

$$t(x) = -<e(x), x> + \{r^2 - <x, x> + <e(x), x>^2\}^{1/2}.$$

We denote by \exp the exponential mapping of $\mathbb{L}(M)$ into E^{n+1} and denote by π the projection of $\mathbb{L}(M)$ into M^n. Then, by the definition of ϕ, we obtain $\phi(x) = \exp t(x)e(x)$. Let $(v^1, \ldots, v^{n+1}, U)$ be a cubical coordinate system centered
at \(\phi(x) \) in \(E^{n+1} \) such that \(U \cap S^n \) is an \(n \)-dimensional slice defined by \(v^{n+1} = v^{n+1}(\phi(x)) \). Let \((u^1, \ldots, u^n, V)\) be a coordinate system at \(x \) in \(M^n \) such that

\[
\phi(V) \subseteq U \cap S^n.
\]

There exists a function \(u \) in \(\mathcal{U}(M) \), and \(u^1 \circ \pi, \ldots, u^n \circ \pi, u \) form a system of coordinates at \(t(x) e(x) \). By virtue of Lemma 2, \(\exp \) is regular at \(t(x) e(x) \). Therefore, \(\phi \) is a univalent mapping of \(V \) into \(U \cap S^n \), and \(u^1 \circ \phi^{-1} = u^1 \circ \pi \circ \exp^{-1} \mid \phi(V) \) is a differentiable function of \(v^1, \ldots, v^n \). This implies \(\phi \) is an immersion. Consequently, \(\phi \) is a diffeomorphism of \(M^n \) into \(S^n \) since \(S^n \) is simply connected when \(n \geq 2 \).

Lemma of Nomizu and Rodríguez [2] can be stated as in the following

Lemma ([2], p. 119). Let \(M^n \) be a manifold immersed into \(E^m \). Let \(p \in E^m \) and assume that \(L_p \) has a non-degenerate critical point \(x \in M^n \) of index \(k \). Then there exist sequences \(\{x_h\} \) of points in \(M^n \) and \(\{p_h\} \) of points in \(E^m \) such that

1. \(\{x_h\} \) and \(\{p_h\} \) converge to \(x \) and \(p \) respectively,
2. \(L_{p_h} \) is a Morse function on \(M^n \), and \(x_h \) is a critical point of \(L_{p_h} \) of index \(k \).

2. Theorems

Lemma 4. Let \(M^n \) be a manifold immersed into \(E^m \), \(m > n+1 \). Let \(x \in M^n \) and let \(e(x) \) be a unit vector normal to \(M^n \) at \(x \). We put \(p(t, x) = x + te(x) \) when \(t > 0 \) and \(q(s, x) = x + se(x) \) when \(s < 0 \). Then \(M^n \) belongs to a linear variety \(E^{m-1} \) if one of the following properties holds for every unit normal vector \(e(x) \) at \(x \):

(a) \[
L_{p(t, x)}(x) \leq L_{p(t, x)}(y) \quad y \in M^n
\]

for all \(t > 0 \).

(b) \[
L_{q(s, x)}(x) \leq L_{q(s, x)}(y) \quad y \in M^n
\]

for all \(s < 0 \).

Proof. Let \(S \) be a set of all unit vectors \(e(x) \) normal to \(M^n \) at \(x \). Then \(S \) can be considered as a Euclidean \((m-n-1) \)-sphere. We suppose that there exists a unit vector \(e'(x) \) normal to \(M^n \) at \(x \) such that (a) does not hold for it. If we denote by \(B \) a set of such unit vectors \(e'(x) \), then \(B \) is an open subset of \(S \). Because, if \(B \) is not an open subset of \(S \), there exists a sequence \(\{e_k(x)\} \) of unit vectors in \(S - B \) which converges to a suitable \(e'(x) \in B \). For each \(e_j(x) \), (a) holds. Therefore,

\[
L_{p'(t, x)}(x) = \lim_{k} L_{p_k(t, x)}(x)
\]

\[
\leq \lim_{k} L_{p_k(t, x)}(y) = L_{p'(t, x)}(y)
\]
for all \(t > 0 \) where \(p'(t, x) = x + te'(x) \) and \(p(t, x) = x + te_\lambda(x) \). This contradicts \(e'(x) \in B \).

When \(e'(x) \in B \), (a) holds for \(-e'(x)\) and hence \(B \equiv S \). Let \(e(x) \) be a boundary point of \(B \). Then there exists a sequence \(\{e_\mu(x)\} \) of unit vectors in \(B \) which converges to \(e(x) \). For each \(e_\mu(x) \), (b) holds. Therefore

\[
L_{q(s, x)}(x) = \lim_{\mu} L_{q_\mu(s, x)}(x)
\leq \lim_{\mu} L_{q_\mu(s, x)}(y) = L_{q(s, x)}(y)
\]

for all \(s < 0 \) where \(q_\mu(s, x) = x + se_\mu(x) \). Since \(B \equiv S \), we obtain \(e(x) \notin B \). These imply both of (a) and (b) hold for \(e(x) \). Therefore

\[
< e(x), y - x > = 0
\]

for all \(y \in M^n \). Thus \(M^n \) belongs to a linear variety \(E^{n-1} \) perpendicular to \(e(x) \).

Theorem 1. Let \(M^n \) be a compact connected manifold immersed into \(E^n \). Let \(e(x) \in \perp(M) \) and let \(\alpha_1, \ldots, \alpha_n \) be eigenvalues of \(A_{e(x)} \). Assume that

1. \(\alpha_i \alpha_j \geq 0 \) (i, j = 1, ..., n) for every \(e(x) \in \perp(M) \),
2. \(C_n(L_p) = 1 \) for every Morse function \(L_p \) on \(M^n \).

Then \(M^n \) is diffeomorphic to \(n \)-sphere \(S^n \).

Proof. Let \(e(x) \in \perp(M) \) be a unit vector at \(x \in M^n \). We suppose that eigenvalues \(\alpha_1, \ldots, \alpha_n \) of \(A_{e(x)} \) are non-positive. Let \(t > 0 \). Then \(x \) is a non-degenerate critical point of \(L_{p(t, x)} \) of index zero. There exist sequences \(\{x_\mu \} \) of points in \(M^n \) and \(\{p_\mu \} \) of points in \(E^n \) as in Lemma of [2]. Since \(C_n(L_{p_\mu}) = 1 \) from (2), Morse function \(L_{p_\mu} \) attains to minimal value at exactly one point \(x_\mu \). Therefore

\[
L_{p(t, x)}(x) = \lim_{\mu} L_{p_\mu}(x_\mu) \leq \lim_{\mu} L_{p_\mu}(y) = L_{p(t, x)}(y)
\]

for all \(t > 0 \). From (1), this implies one of the properties (a) and (b) in Lemma 4 holds for every unit vector \(e(x) \) normal to \(M^n \). According to Lemma 4, \(M^n \) belongs to a linear variety \(E^{n+1} \). When \(M^n \subset E^{n+1} \), the properties (a) and (b) for every unit vector \(e(x) \in \perp(M) \) imply \(M^n \) is immersed into \(E^{n+1} \) as a convex hypersurface from Lemma 1. Thus, from Lemma 3, \(M^n \) is diffeomorphic to \(n \)-sphere \(S^n \).

Theorem 2. Let \(M^n \) be a compact connected manifold immersed into \(E^n \). Let \(e(x) \in \perp(M) \) and let \(\alpha_1, \ldots, \alpha_n \) be eigenvalues of \(A_{e(x)} \). We denote by \(N \) a set of \(e(x) \in \perp(M) \) such that \(\alpha_i \alpha_j > 0 \) (i, j = 1, ..., n). Assume that

1. \(\perp(M) = \overline{N} \),
2. \(C_n(L_p) = 1 \) for every Morse function \(L_p \) on \(M^n \).
Then M^n is diffeomorphic to n-sphere S^n.

Proof. Let $e(x) \in \perp(M)$ be a unit vector at $x \in M^n$. We suppose that eigenvalues a_1, \ldots, a_n of $A_{e(x)}$ are positive. Let a_1 be the smallest eigenvalue of $A_{e(x)}$. If $t > 1/a_1$ then x is a non-degenerate critical point of $L_{p(x)}$ of index n. There exist sequences $\{x_\lambda\}$ of points in M^n and $\{p_\lambda\}$ of points in E^n as in Lemma of [2]. Since $C_n(L_{p_\lambda}) = 1$ from (2), Morse function L_{p_λ} attains to maximal value at exactly one point x_λ. Therefore

$$L_{p(t,x)}(x) = \lim_{\lambda} L_{p_\lambda}(x_\lambda) \geq \lim_{\lambda} L_{p_\lambda}(y) = L_{p(t,x)}(y)$$

and hence $<e(x), x - y> \leq 0$ for all $y \in M^n$. If $s < 0$ then we obtain

$$L_{q(t,x)}(x) - L_{q(s,x)}(y) = -2s <e(x), x - y> - <x - y, x - y> \leq 0$$

for all $y \in M^n$. By the definition of N, this implies one of the properties (a) and (b) in Lemma 4 holds for every unit vector $e(x) \in N$.

When $e(z) \in \perp(M)$ is a unit vector at $z \in M^n$, there exists a sequence $\{e_\mu(x_\mu)\}$ of unit vectors in N which converges to $e(z)$. If (a) holds for all $e_\mu(x_\mu)$, then

$$L_{p(t,z)}(z) = \lim_{\mu} L_{p_\mu(t,x_\mu)}(x_\mu) \leq \lim_{\mu} L_{p_\mu(t,x_\mu)}(y) = L_{p(t,z)}(y)$$

for all $t > 0$ and $y \in M^n$ where $p_\mu(t,x_\mu) = x_\mu + te_\mu(x_\mu)$. Similarly, if (b) holds for all $e_\mu(x_\mu)$ then (b) holds for $e(z)$. Thus one of the properties (a) and (b) in Lemma 4 holds for every unit vector $e(x)$ normal to M^n. According to Lemmas 1 and 4, M^n belongs to a linear variety E^{n+1}, and it is immersed into E^{n+1} as a convex hypersurface. Consequently, from Lemma 3, M^n is diffeomorphic to n-sphere S^n.

References
