タイトル
Some Oscillation and Asymptotic Properties for Linear Differential Equations

著者
STAIKOS, V.A.; PHILOS, Ch.G.

引用
Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 8: 25-30

発行年
1976

URL
http://hdl.handle.net/10109/2879

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
Some Oscillation and Asymptotic Properties for Linear Differential Equations

V. A. STAIKOS* and Ch. G. PHILOS*

In this paper we consider the n-th order \(n > 1 \) general ordinary differential equation

\[
(r_{n-1}(t)(r_{n-2}(t)\cdots(r_1(t)(r_0(t)x(t)))')')' + a(t)x(t) = b(t), \quad t \geq t_0
\]

where the functions \(r_i (i=0, 1, \ldots, n-1) \) are positive at least on the interval \([t_0, \infty)\). The continuity of the functions \(a, b \) and \(r_i (i=0, 1, 2, \ldots, n-1) \) as well as sufficient smoothness to guarantee the existence of solutions of (E) on an infinite subinterval of \([t_0, \infty)\) will be assumed without mention. In what follows the term "solution" is always used only for such solutions \(x(t) \) of (E) which are defined for all large \(t \). The oscillatory character is considered in the usual sense, i.e. a continuous real-valued function which is defined on an interval of the form \([T, \infty)\) is called oscillatory if it has no last zero, and otherwise it is called nonoscillatory.

We give here some conditions to ensure that

\[
\lim_{t \to \infty} x(t) = 0
\]

for all oscillatory solutions of the equation (E). However for \(b = 0 \), the same conditions guarantee that all eventually nontrivial solutions of the differential equation

\[
(r_{n-1}(t)(r_{n-2}(t)\cdots(r_1(t)(r_0(t)x(t)))')')' + a(t)x(t) = 0
\]

are nonoscillatory. The technique used is an adaptation of that of Singh [3] which concerns the particular case \(r_0=1, r_1=r \) and \(r_2=\cdots=r_{n-1}=1 \).

Theorem 1. Consider the differential equation (E) subject to the conditions:

\[
(R_0) \quad \lim_{t \to \infty} r_0(t) > 0,
\]

\[
(A) \quad \int_{s_n-1}^{\infty} \frac{1}{r_1(s)} \int_{s_1}^{s_2} \frac{1}{r_2(s)} \cdots \int_{s_{n-2}}^{s_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} |a(s)| ds ds_{n-1} \cdots ds_2 ds_1 < \infty
\]

Received January 24, 1976.

* Department of Mathematics, University of Ioannina, Ioannina, Greece.
Then for every oscillatory solution \(x \) of the differential equation (E),
\[
\lim_{t \to \infty} x(t) = 0.
\]

Proof. Let \(x \) be an oscillatory solution of the differential equation (E). Without loss of generality we suppose that \(x \) is a solution of (E) on the whole interval \([t_0, \infty)\).

Consider the functions \(D_r^{(k)} x \) \((k = 0, 1, \ldots, n-1)\) which are defined on the interval \([t_0, \infty)\) as follows:
\[
D_r^{(0)} x = r_0 x
\]
and
\[
D_r^{(k)} x = r_k (D_r^{(k-1)} x) \quad (k = 1, 2, \ldots, n-1).
\]

Now, we assume that
\[
\limsup_{t \to \infty} |(D_r^{(0)} x)(t)| > d
\]
for some \(d > 0 \). Moreover, because of condition \((R_0)\), there exists a constant \(c > 0 \) with
\[
r_0(t) \geq c \quad \text{for every } t \geq t_0.
\]

Thus, by conditions \((A)\) and \((B)\), we have that for some \(T \geq t_0,\)
\[
\int_{T}^{\infty} \frac{1}{r_1(s_1)} \int_{s_1}^{\infty} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}(s_{n-1})}
\]
\[
\int_{s_{n-1}}^{\infty} |a(s)| ds \ ds_{n-1} \cdots ds_{2} ds_{1} \leq \frac{c}{2}
\]
and
\[
\int_{T}^{\infty} \frac{1}{r_1(s_1)} \int_{s_1}^{\infty} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}(s_{n-1})}
\]
\[
\int_{s_{n-1}}^{\infty} |b(s)| ds \ ds_{n-1} \cdots ds_{2} ds_{1} \leq \frac{d}{2}.
\]

Since the solution \(x \) is oscillatory, the same holds for the functions \(D_r^{(k)} x \) \((k = 0, 1, \ldots, n-1)\) and consequently we can choose \(\tau_1 > \tau_2 > \cdots > \tau_{n-1} > t_1 > T \)
Some Oscillation and Asymptotic Properties for Linear Differential Equations

with

\[(D^{(0)}_t x)(t_1) = 0\]

and

\[(D^{(k)}_t x)(t_k) = 0 \quad (k = 1, 2, \ldots, n - 1).\]

Furthermore, we consider, by (1), a \(T_0 > \tau_1\) with

\[|(D^{(0)}_t x)(T_0)| > d\]

and next a \(t_2 > T_0\) with

\[(D^{(0)}_t x)(t_2) = 0.\]

Now, on repeated integration from equation (E) we have

\[\pm (D^{(0)}_t x)(t) + \int_{t_1}^{t} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} a(s)x(s)ds \, ds_{n-1} \cdots ds_2 ds_1 = \]

\[= \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_1} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} b(s)ds \, ds_{n-1} \cdots ds_2 ds_1\]

for every \(t \in [t_1, t_2]\) and consequently, since \(t_2 > \tau_1 > \tau_2 > \cdots > \tau_{n-1} > t_1 > T\), we get

\[|(D^{(0)}_t x)(t)| \leq \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} |a(s)| \, ds \, ds_{n-1} \cdots ds_2 ds_1 \]

\[+ \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} |b(s)| \, ds \, ds_{n-1} \cdots ds_2 ds_1.\]

This immediately gives

\[1 \leq \frac{M}{M^*} \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} |a(s)| \, ds \, ds_{n-1} \cdots ds_2 ds_1 \]

\[+ \frac{1}{M^*} \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-2}}^{t_{n-1}} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_{n-1}} |b(s)| \, ds \, ds_{n-1} \cdots ds_2 ds_1,\]
Thus, by virtue of (3) and (4), we obtain

\[1 \leq \frac{M}{M^*} \cdot \frac{c}{2} + \frac{d}{2M^*}. \]

But, by (5) and (2), we have

\[M^* > d \quad \text{and} \quad M^* \geq c \cdot M \]

and consequently the contradiction

\[1 \leq \frac{M}{M^*} \cdot \frac{c}{2} + \frac{d}{2M^*} < \frac{1}{2} + \frac{1}{2} = 1. \]

We have just proved that (1) fails and hence

\[\lim_{t \to \infty} |(D_r^{(0)}x)(t)| = 0 \]

which, by condition (R0), gives

\[\lim_{t \to \infty} x(t) = 0. \]

Theorem 2. Consider the differential equation \((E)_0 \) subject to the conditions (R0) and (A).

Then every eventually nontrivial solution of the differential equation \((E)_0 \) is nonoscillatory.

Proof. Let \(x \) be an eventually nontrivial oscillatory solution of \((E)_0 \) on the whole interval \([t_0, \infty)\). As in the proof of Theorem 1, we can consider \(c \) and \(T \) satisfying (2) and (3). Similarly, we can choose again \(\tau_1 > \tau_2 > \cdots > \tau_{n-1} > t_1 > T \) in exactly the same way. Next, since \(x \) is eventually nontrivial and oscillatory, \(T_0 \) and \(t_2 \) can be chosen so that \(t_2 > T_0 > \tau_1 \) and

\[|(D_r^{(0)}x)(T_0)| > 0 \quad \text{and} \quad (D_r^{(0)}x)(t_2) = 0. \]

As in the proof of Theorem 1, we obtain

\[|(D_r^{(0)}x)(t)| \leq \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-1}}^{t_2} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_2} |a(s)| |x(s)| ds \, ds_{n-1} \cdots ds_2 \, ds_1 \]

for every \(t \in [t_1, t_2] \) and hence

\[M^* \leq M \int_{t_1}^{t_2} \frac{1}{r_1(s_1)} \int_{s_1}^{t_2} \frac{1}{r_2(s_2)} \cdots \int_{s_{n-1}}^{t_2} \frac{1}{r_{n-1}(s_{n-1})} \int_{s_{n-1}}^{t_2} |a(s)| \, ds \, ds_{n-1} \cdots ds_2 \, ds_1, \]
where $M = \max_{t \in [t_1, t_2]} |x(t)|$ and $M^* = \max_{t \in [t_1, t_2]} |(D_r(t)x)(t)|$.

Therefore, by (2) and (3), we have

$$Mc \leq M^* \leq M^*_c\frac{C}{2}$$

and consequently $M^* = 0$, which is a contradiction since by the definition of T_0,

$$M^* \geq |(D_r(t)x)(T_0)| > 0.$$

We shall now clarify the importance of Theorems 1 and 2 by applying them in the particular case where for some integer m, $1 \leq m \leq n-1$, we have $r_j = 1$ for $j \neq n-m$ and $r_{n-m} = r$.

More precisely, we give two corollaries concerning the differential equation

$$(E_m)$$

COROLLARY 1. Consider the differential equation (E_m) subject to the conditions:

$$(A_m)$$

$$\int_{\infty}^{\infty} \frac{t^{n-m-1}}{r(t)} \int_{t}^{\infty} (s-t)^{m-1} |a(s)| \, ds \, dt < \infty$$

and

$$(B_m)$$

$$\int_{\infty}^{\infty} \frac{t^{n-m-1}}{r(t)} \int_{t}^{\infty} (s-t)^{m-1} |b(s)| \, ds \, dt < \infty.$$

Then for every oscillatory solution x of the differential equation (E_m),

$$\lim_{t \to \infty} x(t) = 0.$$

PROOF. We have the formula

$$\int_{\infty}^{\infty} \int_{\infty}^{\infty} (s-u)^k p(s) \, ds \, dv = \int_{\infty}^{\infty} \int_{u}^{\infty} \frac{(s-u)^{k+1}}{k+1} p(s) \, ds,$$

where p is a continuous nonnegative function on $[u, \infty)$ and k a nonnegative integer. By this formula, it is a matter of elementary calculus to see that in the considered case the conditions (A) and (B) follow from (A_m) and (B_m) respectively.

COROLLARY 2. Consider the differential equation $(E_m)_0$.

$$(E_m)_0$$

$$[r(t)x^{(n-m)}(t)]^{(m)} + a(t)x(t) = 0,$$

subject to the condition (A_m).

Then every eventually nontrivial solution of the differential equation $(E_m)_0$ is nonoscillatory.
Remark. The above corollaries 1 and 2 are generalizations of the results in [3] still in the particular case \(m = n - 1 \). ([1], [2])

References

