<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Correspondence of Boundaries of Open Sets in Coverings</td>
</tr>
<tr>
<td>著者</td>
<td>MOCHIZUKI, Nozomu</td>
</tr>
<tr>
<td>引用</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 7: 13-16</td>
</tr>
<tr>
<td>発行日</td>
<td>1975</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2865</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先
茨城大学学術情報リポジトリ
お問合せ先
茨城大学学術情報リポジトリ

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
Correspondence of Boundaries of Open Sets in Coverings

Nozomu Mochizuki*

1. Let \(\pi : \tilde{X} \to X \) be a covering map and \(\tilde{B} \) be an open subset of \(\tilde{X} \). The boundary of \(\tilde{B} \) will be denoted by \(\partial \tilde{B} \). Our main purpose is to discuss a relation between the condition \(\pi(\partial \tilde{B}) \subseteq \partial \pi(\tilde{B}) \) and a property of \(\pi|\tilde{B} \), the restriction of \(\pi \) to \(\tilde{B} \). Arguments used are quite elementary.

2. In what follows, all spaces are assumed to be locally arcwise connected Hausdorff spaces. If \(\tilde{X} \) is such a space, every open connected subset is arcwise connected; every component of an open subset is open. A continuous map \(\tilde{\sigma} : [0, 1] \to \tilde{X} \) with \(\tilde{\sigma}(0) = \tilde{p}, \tilde{\sigma}(1) = \tilde{q} \) will simply be called an arc \(\tilde{\sigma} \) in \(\tilde{X} \) with the initial point \(\tilde{p} \) and the terminal point \(\tilde{q} \); for this, we shall also say that \(\tilde{\sigma} \) joins \(\tilde{p} \) and \(\tilde{q} \).

Lemma 1. Let \(\pi : \tilde{X} \to X \) be a continuous map of \(\tilde{X} \) into \(X \) and let \(\tilde{D}, D \) be open subsets of \(\tilde{X}, X \), respectively, such that \(\pi(\tilde{D}) \subseteq D \). Then, \(\pi(\partial \tilde{D}) \subseteq \partial D \) if and only if every component of \(\tilde{D} \) is also a component of \(\pi^{-1}(\tilde{D}) \).

Proof. Let \(\pi(\partial \tilde{D}) \subseteq \partial D \). Let \(\tilde{D} = \bigcup_{i \in I} \tilde{D}_i \) be the decomposition of \(\tilde{D} \) into components where \(I \) denotes an index set. Since \(\partial \tilde{D} \subseteq \partial \tilde{D} \), we have \(\pi(\partial \tilde{D}_i) \subseteq \partial D \) for every \(i \in I \). The open subset \(\pi^{-1}(\tilde{D}) \) is decomposed into components such as \(\pi^{-1}(\tilde{D}) = \bigcup_{j \in J} \tilde{G}_j \) in which every \(\tilde{D}_i \) is contained in some \(\tilde{G}_j \). We suppose that \(\tilde{D}_i \nsubseteq \tilde{G}_j \) for some \(i \in I, j \in J \). Let \(\tilde{p} \in \tilde{D}_i, \tilde{q} \in \tilde{G}_j - \tilde{D}_i \). There exists an arc \(\tilde{\sigma} \) in \(\tilde{G}_j \) which joins \(\tilde{p} \) and \(\tilde{q} \). Since \(\tilde{\sigma} \) is connected, we have \(\tilde{\sigma} \cap \partial \tilde{D}_i \neq \emptyset \). It follows that \(D \cap \pi(\partial \tilde{D}_i) \neq \emptyset \); this is a contradiction.

3. In this section, \(\pi : \tilde{X} \to X \) denotes a continuous map of \(\tilde{X} \) onto \(X \). For an open subset \(\tilde{B} \) of \(\tilde{X} \) we shall put \(\pi_\tilde{B} = \pi|\tilde{B} \), the restriction of \(\pi \).

Theorem 1. (1) Let \(\pi : \tilde{X} \to X \) be a local homeomorphism, \(\tilde{B} \) be an open subset of \(\tilde{X} \). If \(\pi_\tilde{B} : \tilde{B} \to D \) is a covering map, then \(\pi(\partial \tilde{B}) \subseteq \partial D \).
(2) Let \(\pi: \bar{X} \to X \) be a covering map and let \(\bar{D}, D \) be open subsets of \(\bar{X}, X \) respectively such that \(\pi(\bar{D}) \subseteq \bar{D} \). If \(\pi(\partial \bar{D}) \subseteq \partial D \), then \(\pi_0: \bar{D} \to \pi(\bar{D}) \) is a covering map and \(\pi(\partial \bar{D}) \) lies dense in \(\partial \pi(\bar{D}) \).

Proof. (1) Suppose that \(\pi_0: \bar{D} \to D \) is a covering map. We must show that each component of \(\bar{D} \) is a component of \(\pi^{-1}(D) \). Let \(\bar{D}_0 \) be a component of \(\bar{D} \), then \(\bar{D}_0 \subseteq \bar{G}_0 \) for a component \(\bar{G}_0 \) of \(\pi^{-1}(D) \). We fix a point \(\bar{p} \in \bar{G}_0 \). For an arbitrary point \(\bar{q} \in \bar{G}_0 \), an arc \(\bar{\sigma} \) in \(\bar{G}_0 \) joins \(\bar{p} \) and \(\bar{q} \), and \(\pi \bar{\sigma} \) is an arc in \(D \). The covering map \(\pi_0: \bar{D} \to D \) lifts \(\pi \bar{\sigma} \) to an arc \(\bar{\tau} \) in \(\bar{D} \) with the initial point \(\bar{p} \). Since \(\bar{D}_0 \) is a component of \(\bar{D} \), \(\bar{\tau} \) is in \(\bar{D}_0 \). We have \(\pi \bar{\sigma} = \pi \bar{\tau} \) and since, as is well known, the lifting of an arc by a local homeomorphism is unique, it follows that \(\bar{\sigma} = \bar{\tau} \), so \(\bar{q} \in \bar{D}_0 \). Thus we have \(\bar{D}_0 = \bar{G}_0 \).

(2) Let \(\bar{D} = \bigcup \bar{D}_i \) and \(D = \bigcup D_a \) be decompositions into components. Let \(B = \{ \alpha \in A | \bar{D}_i \cap \pi^{-1}(D_a) \neq \emptyset \} \). Then, each \(\bar{D}_i \) is contained in some \(\pi^{-1}(D_a), \alpha \in B \). Let \(I_\alpha = \{ i \in l | \bar{D}_i \cap \pi^{-1}(D_a), \alpha \in B \} \), and let \(\bar{D}_\alpha = \bigcup_{i \in I_\alpha} \bar{D}_i \). Every \(\bar{D}_\alpha, i \in I_\alpha \), is a component of \(\pi^{-1}(D) \) from the assumption, hence a fortiori a component of \(\pi^{-1}(D_a) \). From this fact follows as usual that \(\pi(\bar{D}_\alpha) = D_a, i \in I_\alpha \), and \(\pi|\bar{D}_\alpha: \bar{D}_\alpha \to D_a \) is a covering map. It is clear that \(\bar{D} = \bigcup \bar{D}_\alpha, \pi(\bar{D}) = \bigcup D_a \), therefore, \(\pi_0: \bar{D} \to \pi(D) \) is a covering map. Now, let \(D_0 = \pi(D) \). Then, \(\pi(\partial \bar{D}) \subseteq \partial D_0 \) from the above. To see that \(\pi(\partial \bar{D}) \) is dense in \(\partial D_0 \), we suppose on the contrary that there exists \(p \in \partial D_0 \) such that \(p \notin \pi(\partial \bar{D}) \). Let \(U \) be an open connected neighborhood of \(p \) such that \(\pi(\partial \bar{D}) \cap U = \emptyset \). An arc \(\sigma \) in \(U \) joins \(p \) and a point \(q \in D_0 \cap U \). There exist \(\bar{q} \in \bar{D}, \pi(\bar{q}) = q \), and the lifting \(\bar{\sigma} \) of \(\sigma \) by \(\pi \) with the initial point \(\bar{q} \) and the terminal point \(\bar{p} \). From \(p \in \partial D_0 \) follows that \(\bar{p} \in \bar{D} \); hence, \(\bar{\sigma} \cap \partial \bar{D} \neq \emptyset \). This implies that \(\pi(\partial \bar{D}) \cap U \neq \emptyset \), a contradiction. The proof is completed.

Corollary 1. Let \(\pi: \bar{X} \to X \) be a covering map, \(\bar{D} \subseteq \bar{X} \) be an open subset and \(D = \pi(\bar{D}) \). Then \(\pi_0: \bar{D} \to D \) is a covering map if and only if \(\pi(\partial \bar{D}) \subseteq \partial D \).

The following Lemma 2 is essentially due to Corollary 1 to Theorem 7 in [1]; arguments there, combined with our Corollary 1, yield Corollary 2 below.

Lemma 2. Let \(\pi: \bar{X} \to X \) be a local homeomorphism and \(D = \pi(\bar{D}) \) where \(\bar{D} \) is an open subset of \(\bar{X} \). If \(\pi_0: \bar{D} \to D \) is a closed map, then \(\pi(\partial \bar{D}) \subseteq \partial D \).

Proof. Let \(\bar{p} \in \partial \bar{D}, p = \pi(\bar{p}) \). Choose open neighborhoods \(\bar{U}, U \) of \(\bar{p}, p \) respectively for which \(\pi|\bar{U}: \bar{U} \to U \) is a homeomorphism. There exists a net \(\{ \bar{p}_n \} \subseteq \bar{D} \cap \bar{U} \) such that \(\bar{p}_n \to \bar{p} \). The subset \(\pi(\bar{D} \cap \{ \bar{p}_n \}) \) is closed in \(D \) by assumption, and \(\pi(\bar{p}_n) \to p \). Let \(p \in D \), then \(p \) belongs to this subset; hence \(p = \pi(\bar{q}) \) for some \(\bar{q} \in \bar{D} \cap \{ \bar{p}_n \} \). If \(\bar{q} \in \bar{U} \), we have \(\bar{p} = \bar{q} \), a contradiction. On the other hand, if \(\bar{q} \in \bar{U} \), we have \(p \in \partial U \), since \(\bar{q} \in \partial \bar{U} \) and \(\pi(\partial \bar{U}) \subseteq \partial U \); this is also a contradiction. The proof is completed.
Corollary 2. Let \tilde{B} be a relatively compact open subset of \tilde{X} in Corollary 1, then the following are equivalent each other.

1. $\pi_\delta: \tilde{B} \to D$ is a covering map.
2. $\pi_\delta: \tilde{B} \to D$ is a closed map.
3. $\pi(\partial \tilde{B}) \subseteq \partial D$.
4. $\pi(\partial \tilde{B}) = \partial D$.

The relation $\pi(\partial \tilde{B}) = \partial D$ does not hold in general in Corollary 1. Let $\tilde{X}_n = \{(x, n) \in R^2|0 < x < 3\}$, $\tilde{X} = \bigcup_{n=1}^\infty \tilde{X}_n$, and $X = \{(x, 0) \in R^2|0 < x < 3\}$. By $\pi(x, y) = (x, 0)$, $\pi: \tilde{X} \to X$ is a covering map. Let $a_n = 2(1 - \frac{1}{2^n})$ and define $\tilde{B}_n = \{(x, n) \in R^2|a_{n-1} < x < a_n\}$, $\tilde{B} = \bigcup_{n=1}^\infty \tilde{B}_n$. Then, $D = \pi(\tilde{B}) = \{(x, 0)|0 < x < 2, x \neq a_n, n = 1, 2, \ldots\}$ and $\pi(x, 0) = \bigcup_{n=1}^\infty \{(a_n, 0)\}$ and $\partial D = \pi(\partial \tilde{B}) \cup \{(2, 0)\}$.

4. In this section, we shall introduce a concept of connectedness of an open set near a boundary point. Let D be an open subset of X and let $p \in \partial D$. We shall say that D is connected near p if the following is satisfied: For any neighborhood U of p, there exists an open neighborhood V of p such that $V \subseteq U$ and $D \cap V$ is connected. If D is connected near every boundary point, D will be said to be connected near the boundary.

Let $D = \bigcup_{a \in A} D_a$ be the decomposition into components; let $p \in \partial D$. Then, D is connected near p if and only if there exists $a \in A$ such that $p \in \partial D_a$ where D_a is connected near p and $p \in \bigcup_{a \neq a} D_a$. In particular, if D is connected near the boundary, we have $\partial D = \bigcup \partial D_a$, and every D_a is connected near the boundary.

Lemma 3. Let $\pi: \tilde{X} \to X$ be a local homeomorphism and $\pi_\delta: \tilde{B} \to D$ be a covering map for an open subset $\tilde{B} \subseteq \tilde{X}$. Let $p \in \partial D$ and $p = \pi(p)$. If D is connected near p, then \tilde{B} is connected near \tilde{p}.

Proof. Let \tilde{W} be a neighborhood of \tilde{p}. We can choose open neighborhoods $\tilde{U} \subseteq \tilde{W}$, U of \tilde{p}, p respectively such that $\pi(\tilde{U}) \to U$ is a homeomorphism and $D \cap U$ is connected. Clearly, we have $\pi(\partial \tilde{U}) \subseteq \partial U$. We shall see that $\pi|\tilde{B} \cap \tilde{U}: \tilde{B} \cap \tilde{U} \to D \cap U$ is a homeomorphism; for this, it is enough to see that $\pi|\tilde{B} \cap \tilde{U}$ is a map onto $D \cap U$. Let $\tilde{q}_0 \in \tilde{B} \cap \tilde{U}$. Clearly, $\pi(\tilde{q}_0) \in D \cap U$. For an arbitrary point $q \in D \cap U$, an arc σ in $D \cap U$ joins $\pi(\tilde{q}_0)$ and q; this is lifted by π_δ to an arc $\tilde{\sigma}$ in \tilde{B} with the initial point \tilde{q}_0 and the terminal point $\tilde{q} \in \tilde{B}$. If $\tilde{q} \not\in \tilde{U}$, we have $\tilde{\sigma} \cap \partial \tilde{U} = \emptyset$ which is a contradiction. This completes the proof.

Theorem 2. Let $\pi: \tilde{X} \to X$ and $\pi_\delta: \tilde{B} \to D$ be covering maps where \tilde{B} is an open subset of \tilde{X}. If D is connected near $p \in \partial D$, then $p \in \pi(\partial \tilde{B})$.
PROOF. There is a neighborhood W of p which is evenly covered by π; that is,
$\pi^{-1}(W) = \bigcup_{j \in J} \tilde{W}_j$, where $\{\tilde{W}_j \mid j \in J\}$ is a disjoint family of open connected subsets and $\pi_j = \pi|_{\tilde{W}_j}$: $\tilde{W}_j \rightarrow W$ is a homeomorphism for any $j \in J$. We can choose an open neighborhood U of p such that $U \subseteq W$ and $D \cap U$ is connected. Let $\tilde{U}_j = \pi^{-1}_j(U)$, $j \in J$. From $p \in \pi(\partial \tilde{D})$, it is easily seen that $\tilde{D} \cap \pi^{-1}(U) \neq \emptyset$, so that $\tilde{D} \cap \tilde{U}_j \neq \emptyset$ for some j. Let $\tilde{p}_0 \in \tilde{D} \cap \tilde{U}_j$, then $\pi(\tilde{p}_0) \in D \cap U$. Let $\tilde{p} = \pi^{-1}_j(p)$. For an arbitrary neighborhood V of \tilde{p} such that $\tilde{V} \subseteq \tilde{U}_j$, we put $V = \pi_j(\tilde{V})$. For a point $q \in D \cap V$, there exists an arc σ in $D \cap U$ which joins $\pi(\tilde{p}_0)$ and q. Let $\tilde{\sigma} = \pi^{-1}_j(\sigma)$ and let \tilde{q} be the terminal point of $\tilde{\sigma}$, then $\tilde{q} \in \tilde{V}$. On the other hand, $\tilde{\sigma}$ is lifted by $\pi_\tilde{D}$ to an arc $\tilde{\tau}$ in \tilde{D} with the initial point \tilde{p}_0. From $\pi_\tilde{\sigma} = \pi_\tilde{\tau}$ follows that $\tilde{\sigma} = \tilde{\tau}$; this implies that $\tilde{q} \in \tilde{D} \cap \tilde{V}$. It is concluded that $\tilde{p} \in \partial \tilde{D}$ and $p = \pi(\tilde{p}) \in \pi(\partial \tilde{D})$, which completes the proof.

Now, let $\pi: \tilde{X} \rightarrow X$ and $\pi_\tilde{D}: \tilde{D} \rightarrow D$ be covering maps and $D = \bigcup_{a \in A} D_a$, $\tilde{D} = \bigcup_{i \in I} \tilde{D}_i$ be decompositions; let D be connected near the boundary. Let I_a be as in the proof of Theorem 1, (2). Then, $\pi|_{\tilde{D}_i}: \tilde{D}_i \rightarrow D_a$ is a covering map for every $i \in I_a$ and D_a is connected near the boundary. \tilde{D} is also connected near the boundary by Theorem 1, (1) and Lemma 3. Thus, we have the following.

Corollary 3. Let π, $\pi_\tilde{D}$, \tilde{D}, D be as above. Then, $\pi(\partial \tilde{D}_i) = \partial D_a$, $i \in I_a$, and $\partial D = \bigcup_{a \in A} \partial D_a$.

Reference