<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>NOTES ON PRIMARY OR COPRIMARY MODULES</td>
</tr>
<tr>
<td>Author(s)</td>
<td>MATSUDA, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 6: 3-8</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1974</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/2858</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課（図書館） 情報支援係

http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html
NOTES ON PRIMARY OR COPRIMARY MODULES

Ryûki Matsuda

This paper consists of three notes on primary or coprimary modules. In §1, we extend the result of [2] on primary ideals to primary submodules. In §2, we extend the result of Kirby[1] on coprimary modules to the case when the ring does not have the identity. In §3, we show that the \(\mathfrak{p} \)-primary for a maximal ideal \(\mathfrak{p} \) in the sense of Uda [3] is equivalent to the \(\mathfrak{p} \)-coprimary in essence.

1. A PROPERTY OF PRIMARY SUBMODULES. All definitions of terms in the following are of Zariski-Samuel [4] (Modules over a unitary ring are assumed unitary as usual). Let \(R \) be a (not necessarily with 1) commutative ring, \(\mathfrak{p} \) a maximal ideal of \(R \), \(\mathfrak{q} \) a \(\mathfrak{p} \)-primary ideal. Then [2] proved that every ideal \(\mathfrak{a} \) such that \(\mathfrak{p} \supset \mathfrak{a} \supset \mathfrak{q} \) is also \(\mathfrak{p} \)-primary. In this section, we generalize the result to submodules.

Lemma 1.1 ([2], lemma). Let \(R \) be a commutative ring, \(\mathfrak{p} \) a maximal ideal of \(R \), \(\mathfrak{q} \) a \(\mathfrak{p} \)-primary ideal. Then there exist elements \(e \in R \) such that \(e^2 = e(\mathfrak{q}) \) and \(e \neq 0(\mathfrak{p}) \).

Theorem 1.2. Let \(R \) be a commutative ring, \(\mathfrak{p} \) a maximal ideal, \(M \) an \(R \)-module, \(N \) a \(\mathfrak{p} \)-primary submodule. Then every proper submodule containing \(N \) is also \(\mathfrak{p} \)-primary.

Proof. Let \(N' \) be a proper submodule of \(M \) containing \(N \). Since \((N:M) = \mathfrak{q} \) is a \(\mathfrak{p} \)-primary ideal, there exists an element \(e \in R \) such that \(e^2 = e(\mathfrak{q}) \) and \(e \neq 0(\mathfrak{p}) \) by lemma 1.1. Suppose \(ax \in N' \) for \(a \in R \) and \(x \in M \). We will derive \(x \in \mathfrak{a} \) from the assumption \(a \notin \mathfrak{p} \). Since \(\mathfrak{p} \)...
is prime and maximal, we have \(aR + \mathfrak{p} = R \). There exist \(b \in R \) and \(p \in \mathfrak{p} \) such that \(ab + p = e \). Since \(N \) is \(\mathfrak{p} \)-primary, we have \(p^kM \subseteq N \) for some natural number \(k \). Multiplying \(k \)-times the both sides of \(ab + p = e \), we find \(b' \in R \) and \(q \in \mathfrak{p} \) such that \(ab' + p^k = e + q \). By \(ex + qx = b'(ax) + p^kx \), we have \(ex \in N' \). Since \((e^2 - e)x \in N \), we have \(ex - x \in N \subseteq N' \), and hence \(x \in N' \). We have seen that \(N' \) is a primary submodule. It is obvious that the radical \(\sqrt{N'} : M \) of \(N' \) contains \(\mathfrak{p} \). If \(\sqrt{N'} : M \) contains \(\mathfrak{p} \) properly, \(\sqrt{N'} : M \) is \(R \) by the maximality of \(\mathfrak{p} \). Let \(x \) be any element of \(M \). We have \(e^{k'}x \in N' \) for some \(k' > 0 \). We can derive \(x \in N' \) by same way as the above argument. And there arises the contradiction of \(N' = M \). Therefore \(N' \) is a \(\mathfrak{p} \)-primary submodule of \(M \).

PROPOSITION 1.3. Let \(R \) be a commutative ring, \(\mathfrak{p} \) a maximal ideal of \(R \), \(\mathfrak{q} \) a \(\mathfrak{p} \)-primary ideal. Then every proper ideal containing \(\mathfrak{q} \) is also a \(\mathfrak{p} \)-primary ideal.

COROLLARY 1.4. ([2], proposition). Let \(R \) be a commutative ring, \(\mathfrak{p} \) a maximal ideal of \(R \), \(\mathfrak{q} \) a \(\mathfrak{p} \)-primary ideal. Then every ideal \(\mathfrak{a} \) such that \(\mathfrak{p} \supseteq \mathfrak{a} \supseteq \mathfrak{q} \) is also a \(\mathfrak{p} \)-primary.

REMARK 1.5.1. Let \(M \) be a module over a commutative ring \(R \). ([4] chap. 4, appendix says that \(\sqrt{N_1 + N_2} \) is equal to \(\sqrt{N_1} + \sqrt{N_2} \) for submodules \(N_1 \) and \(N_2 \). The assertion is false. The following is a counter example. We set \(R \) a commutative field, \(M = R \oplus R \) the direct sum, \(N_1 = R \oplus 0 \) and \(N_2 = 0 \oplus R \).

REMARK 1.5.2. Let \(M \) be a module over a commutative ring \(R \), \(N_1, \ldots, N_n \) a finite number of primary submodules belonging to maximal ideal \(\mathfrak{p} \). If \(N_1 + \ldots + N_n \) is distinct from \(M \), it is a \(\mathfrak{p} \)-primary submodule by theorem 1.2. But, as the example of above remark shows, this is not always the case.

REMARK 1.5.3. Let \(M \) be a module over a commutative ring \(R \). ([4] chap. 4, appendix says that, if the radical \(\sqrt{N} \)
of a submodule \(N \) is maximal, \(N \) is primary. It is true, if \(R \) has the identity. But it is not always true. For example, let \(X \) be a non-zero commutative additive group. Setting \(xy = 0 \) for every \(x, y \in X \), we have a ring \(A \). Let \(R = A \oplus F \) be the direct sum of rings \(A \) and a commutative field \(F \), \(M = R \) and \(N = 0 \).

2. A NOTE ON KIRBY'S PAPER. Let \(R \) be a commutative ring (not necessarily with 1), \(M \) an \(R \)-module. If \(a \notin \sqrt{0} : M \) implies \(aM = M \) for \(a \in R \), we call after Kirby [1] \(M \) a coprimary \(R \)-module. Then \(\sqrt{0} : M = \mathfrak{p} \) is a prime ideal of \(R \), and we call \(M \) a \(\mathfrak{p} \)-coprimary module. If \(M \) is the sum \(N_1 + \ldots + N_n \) of a finite number of coprimary submodules \(N_i \), the expression \(M = N_1 + \ldots + N_n \) is called coprimary decomposition. We set \(\sqrt{0} : N_i = \mathfrak{p}_i \). Then, if \(N_1 + \ldots + N_{i-1} + N_{i+1} + \ldots + N_n \neq M \) for \(i = 1, \ldots, n \), and \(\mathfrak{p}_1, \ldots, \mathfrak{p}_n \) are distinct each other, the expression is called a normal coprimary decomposition. Kirby proved the following: "let \(R \) be a commutative ring with 1 and with the maximum condition, \(M \) an \(R \)-module with the minimum condition with respect to submodules and with a coprimary decomposition \(M = N_1 + \ldots + N_n \), where \(N_i \) is a \(\mathfrak{p}_i \)-coprimary submodule for \(i = 1, \ldots, n \). If the \(\mathfrak{p}_i \) are distinct maximal ideals, then \(M \) has the maximum condition, \(M \) is the direct sum of the \(N_1, \ldots, N_n \) and \(M = N_1 + \ldots + N_n \) is the unique normal coprimary decomposition of \(M \)." In this section, we prove the same assertion for any commutative rings without the identities.

LEMMA 2.1. Let \(R \) be a commutative ring, \(\mathfrak{p} \) a maximal ideal, \(N \) an \(\mathfrak{p} \)-coprimary \(R \)-module. Then every proper submodule is also \(\mathfrak{p} \)-coprimary.

This is the dual analogue of the proposition of theorem 1.2.

LEMMA 2.2. ([4], chap. 3, theorem 21). Let \(M \) be a module over a commutative ring \(R \). Then a necessary and sufficient condition that \(M \) has a composition series is that it satisfies both the chain conditions.
LEMMA 2.3. ([1], theorem 2). Let M be a module over a commutative ring R, $M = N_1 + \ldots + N_n$ and $M = N'_1 + \ldots + N'_m$ be two normal coprimary decompositions of M. We set $\sqrt{0}: N_i = p_i$ for $i = 1, \ldots, n$ and $\sqrt{0}: N'_j = p'_j$ for $j = 1, \ldots, m$. Then n is equal to m and the set $\{ p_1, \ldots, p_n \}$ is identical with $\{ p'_1, \ldots, p'_m \}$. Moreover, if $p_1 = p'_1$ is minimal among $\{ p_1, \ldots, p_n \}$, we have $N_1 = N'_1$.

THEOREM 2.4. Let R be a commutative ring with the maximum condition, M an R-module with the minimum condition and with a coprimary decomposition $M = N_1 + \ldots + N_n$, where N_i is a p_i-coprimary submodule for $i = 1, \ldots, n$. If the p_i are distinct maximal ideals of R, then M has the maximum condition, M is the direct sum of the N_i and $M = N_1 + \ldots + N_n$ is the unique normal coprimary decomposition of M.

PROOF. Suppose $N_1 \cap (N_1 + \ldots + N_{i-1} + N_{i+1} + \ldots + N_n) = N$ is not zero for some i, say $i = 1$. Since $\sqrt{0}: N_1 = p_1$, we see $\sqrt{0}: N_2 + \ldots + N_n \supseteq p_2 \ldots p_n$. Since $\sqrt{0}: N = p_1$ by lemma 2.1, we have $p_1 \supseteq \sqrt{0}: N_2 + \ldots + N_n \supseteq p_2 \ldots p_n$.

Since p_1 is prime, at least one of $\{ p_2, \ldots, p_n \}$ is contained in p_1. This contradicts with the assumption that the p_i are maximal. Therefore we see $N = 0$, and hence M is the direct sum of the N_i. Therefore N_i is not contained in $N_1 + \ldots + N_{i-1} + N_{i+1} + \ldots + N_n$ for $i = 1, \ldots, n$, hence $M = N_1 + \ldots + N_n$ is a normal coprimary decomposition. Since each p_i is minimal among $\{ p_1, \ldots, p_n \}$, $M = N_1 + \ldots + N_n$ is the unique normal decomposition by lemma 2.3.

Since R has the maximum condition and p_1 is $\sqrt{0}: N_1$, we have $p_1^{k(i)} N_1 = 0$ for some natural number $k(i)$ for $i = 1, \ldots, n$, hence $p_1^{k(1)} \ldots p_1^{k(n)} M = 0$. As [4], chap. 4, 2 does, we consider the sequence

$$M \supset p_1 M \supset p_1^2 M \supset \ldots \supset p_1^{k(1)} M \supset p_1^{k(1)} p_2 M \supset \ldots \supset p_1^{k(1)} \ldots p_n^{k(n)} M = 0.$$

We see that R/p_1 are fields for $i = 1, \ldots, n$. Therefore
each consecutive two terms have composition series, hence M has the maximum condition by lemma 2.2. We have proved all the assertions of theorem 2.4.

3. THE MAXIMAL IDEAL-PRIMARY IN THE SENSE OF UDA. Let R be a (not necessarily with 1) commutative ring, \mathfrak{p} an ideal of R, M an R-module. When $(0 : x)$ is a \mathfrak{p}-primary ideal for every $0 \neq x \in M$, Uda [3] calls M to be a \mathfrak{p}-primary module. In this section, we show that M is \mathfrak{p}-primary for a maximal \mathfrak{p} in the sense of Uda if and only if Rx is \mathfrak{p}-coprimary for every $0 \neq x \in M$.

Lemma 3.1. Let R be a commutative ring, \mathfrak{p} a maximal ideal of R, \mathfrak{q} a \mathfrak{p}-primary ideal. Then \mathfrak{p} is the unique maximal ideal containing \mathfrak{q}.

This is contained in proposition 1.3.

Proposition 3.2. Let R be a commutative ring, \mathfrak{p} a maximal ideal, M an R-module. If M is \mathfrak{p}-primary in the sense of Uda, Rx is \mathfrak{p}-coprimary for every $0 \neq x \in M$.

Proof. Let x be any non-zero element of M. $(0 : x) = \mathfrak{q}$ is a \mathfrak{p}-primary ideal. We see therefore $\sqrt{0 : Rx} = \mathfrak{p}$. Taking an element $a \notin \mathfrak{p}$, we consider an ideal $\mathfrak{u} = aR + \mathfrak{q}$. Since $\mathfrak{q} \subseteq a \subseteq \mathfrak{p}$, we have $\mathfrak{u} = R$ by lemma 3.1. Therefore for every $b \in R$, there exist $c \in R$ and $q \in \mathfrak{q}$ such that $b = ac + q$. Since $bx = acx + qx = acx$, we see $Rx \subseteq aRx$. We have seen that Rx is \mathfrak{p}-coprimary.

Proposition 3.3. Let R be a commutative ring, \mathfrak{p} an ideal of R, M an R-module. If Rx is \mathfrak{p}-coprimary for every $0 \neq x \in M$, then M is \mathfrak{p}-primary in the sense of Uda.

Proof. Let x be any non-zero element of M. We denote $(0 : x)$ by \mathfrak{q}. Since $\sqrt{0 : Rx} = \mathfrak{p}$, we see $\mathfrak{q} \subseteq \mathfrak{p}$. It is easy to see that \mathfrak{p} is contained in $\sqrt{\mathfrak{q}}$. Suppose $ab \in \mathfrak{q}$ and $b \notin \mathfrak{q}$ for a, b of R. Since $bx \neq 0$, we have $\sqrt{0 : Rbx} = \mathfrak{p}$. Since $abx = 0$, a belongs to \mathfrak{p}. Therefore \mathfrak{q} is \mathfrak{p}-primary.
By propositions 3.2 and 3.3, we have

THEOREM 3.4. Let R be a commutative ring, \mathfrak{q} a maximal ideal, M an R-module. Then M is \mathfrak{q}-primary in the sense of Uda if and only if Rx is \mathfrak{q}-coprimary for every $0 \neq x \in M$.

REFERENCES

Ryûki Matsuda
Department of Mathematics,
Faculty of Science,
Ibaraki University, Mito.

(Received October 25, 1973)