NOTES ON PRIMARY OR COPRIMARY MODULES

MATSUDA, Ryuki

Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 6: 3-8

1974

http://hdl.handle.net/10109/2858

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
NOTES ON PRIMARY OR COPRIMARY MODULES

Ryûki Matsuda

This paper consists of three notes on primary or coprimary modules. In §1, we extend the result of [2] on primary ideals to primary submodules. In §2, we extend the result of Kirby[1] on coprimary modules to the case when the ring does not have the identity. In §3, we show that the \(p \)-primary for a maximal ideal \(p \) in the sense of Uda [3] is equivalent to the \(p \)-coprimary in essence.

1. A PROPERTY OF PRIMARY SUBMODULES. All definitions of terms in the following are of Zariski-Samuel [4] (Modules over a unitary ring are assumed unitary as usual). Let \(R \) be a (not necessarily with 1) commutative ring, \(p \) a maximal ideal of \(R \), \(q \) a \(p \)-primary ideal. Then [2] proved that every ideal \(a \) such that \(p \supseteq a \supseteq q \) is also \(p \)-primary. In this section, we generalize the result to submodules.

LEMMA 1.1 ([2], lemma). Let \(R \) be a commutative ring, \(p \) a maximal ideal of \(R \), \(q \) a \(p \)-primary ideal. Then there exist elements \(e \in R \) such that \(e^2 = e(q) \) and \(e \notin 0(p) \).

THEOREM 1.2. Let \(R \) be a commutative ring, \(p \) a maximal ideal, \(M \) an \(R \)-module, \(N \) a \(p \)-primary submodule. Then every proper submodule containing \(N \) is also \(p \)-primary.

PROOF. Let \(N' \) be a proper submodule of \(M \) containing \(N \). Since \((N:M) = q \) is a \(p \)-primary ideal, there exists an element \(e \in R \) such that \(e^2 = e(q) \) and \(e \notin 0(p) \) by lemma 1.1. Suppose \(ax \in N' \) for \(a \in R \) and \(x \in M \). We will derive \(x \in a \) from the assumption \(a \notin p \). Since \(p \)
is prime and maximal, we have $aR + \mathfrak{p} = R$. There exist $b \in R$ and $p \in \mathfrak{p}$ such that $ab + p = e$. Since N is \mathfrak{p}-primary, we have $p^kM \subset N$ for some natural number k. Multiplying k-times the both sides of $ab + p = e$, we find $b' \in R$ and $q \in \mathfrak{p}$ such that $ab' + p^k = e + q$. By $ex + qx = b'(ax) + p^kx$, we have $ex \in N'$. Since $(e^2 - e)x \in N$, we have $ex - x \in N \subset N'$, and hence $x \in N'$. We have seen that N' is a primary submodule. It is obvious that the radical $\sqrt{N}: \mathfrak{m}$ of N' contains \mathfrak{p}. If $\sqrt{N}: \mathfrak{m}$ contains \mathfrak{p} properly, $\sqrt{N}: \mathfrak{m}$ is R by the maximality of \mathfrak{p}. Let x be any element of M. We have $e^{k'}x \in N'$ for some $k' > 0$. We can derive $x \in N'$ by the same way as the above argument. And there arises the contradiction of $N' = M$. Therefore N' is a \mathfrak{p}-primary submodule of M.

PROPOSITION 1.3. Let R be a commutative ring, \mathfrak{p} a maximal ideal of R, \mathfrak{q} a \mathfrak{p}-primary ideal. Then every proper ideal containing \mathfrak{q} is also a \mathfrak{p}-primary ideal.

COROLLARY 1.4. ([2], proposition). Let R be a commutative ring, \mathfrak{p} a maximal ideal of R, \mathfrak{q} a \mathfrak{p}-primary ideal. Then every ideal \mathfrak{a} such that $\mathfrak{p} \supset \mathfrak{a} \supset \mathfrak{q}$ is also \mathfrak{p}-primary.

REMARK 1.5.1. Let M be a module over a commutative ring R. [4] chap. 4, appendix says that $\sqrt{N_1 + N_2}$ is equal to $\sqrt{N_1} + \sqrt{N_2}$ for submodules N_1 and N_2. The assertion is false. The following is a counter example. We set R a commutative field, $M = R \oplus R$ the direct sum, $N_1 = R \oplus 0$ and $N_2 = 0 \oplus R$.

REMARK 1.5.2. Let M be a module over a commutative ring R, N_1, \ldots, N_n a finite number of primary submodules belonging to maximal ideal \mathfrak{p}. If $N_1 + \ldots + N_n$ is distinct from M, it is \mathfrak{p}-primary submodule by theorem 1.2. But, as the example of above remark shows, this is not always the case.

REMARK 1.5.3. Let M be a module over a commutative ring R. [4] chap. 4, appendix says that, if the radical $\sqrt{\mathfrak{p}}$
of a submodule N is maximal, N is primary. It is true, if R has the identity. But it is not always true. For example, let X be a non-zero commutative additive group. Setting $xy = 0$ for every $x, y \in X$, we have a ring A. Let $R = A \oplus F$ be the direct sum of rings A and a commutative field F, $M = R$ and $N = 0$.

2. A NOTE ON KIRBY'S PAPER. Let R be a commutative ring (not necessarily with 1), M an R-module. If $a \in R$ implies $aM = M$ for $a \in R$, we call after Kirby [1] M a coprimary R-module. Then $\sqrt{0 : M} = \mathfrak{p}$ is a prime ideal of R, and we call M a \mathfrak{p}-coprimary module. If M is the sum $N_1 + \ldots + N_n$ of a finite number of coprimary submodules N_i, the expression $M = N_1 + \ldots + N_n$ is called coprimary decomposition. We set $\sqrt{0 : N_i} = \mathfrak{p}_i$. Then, if $N_1 + \ldots + N_{i-1} + N_{i+1} + \ldots + N_n \neq M$ for $i = 1, \ldots, n$, and $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are distinct each other, the expression is called a normal coprimary decomposition. Kirby proved the following: "let R be a commutative ring with 1 and with the maximum condition, M an R-module with the minimum condition with respect to submodules and with a coprimary decomposition $M = N_1 + \ldots + N_n$, where N_i is a \mathfrak{p}_i-coprimary submodule for $i = 1, \ldots, n$. If the \mathfrak{p}_i are distinct maximal ideals, then M has the maximum condition, M is the direct sum of the N_1, \ldots, N_n and $M = N_1 + \ldots + N_n$ is the unique normal coprimary decomposition of $M". In this section, we prove the same assertion for any commutative rings without the identities.

Lemma 2.1. Let R be a commutative ring, \mathfrak{p} a maximal ideal, N a \mathfrak{p}-coprimary R-module. Then every proper submodule is also \mathfrak{p}-coprimary.

This is the dual analogue of the proposition of theorem 1.2.

Lemma 2.2. ([4], chap. 3, theorem 21). Let M be a module over a commutative ring R. Then a necessary and sufficient condition that M has a composition series is that it satisfies both the chain conditions.
LEMMA 2.3. ([1], theorem 2). Let M be a module over a commutative ring R, $M = N_1 + \ldots + N_n$ and $M = N'_1 + \ldots + N'_m$ two normal coprimary decompositions of M. We set $\sqrt{0}: N_1 = \mathfrak{p}_1$ for $i = 1, \ldots, n$ and $\sqrt{0}: N'_j = \mathfrak{p}'_j$ for $j = 1, \ldots, m$. Then n is equal to m and the set $\{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$ is identical with $\{ \mathfrak{p}'_1, \ldots, \mathfrak{p}'_m \}$. Moreover, if $\mathfrak{p}_i = \mathfrak{p}'_j$ is minimal among $\{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$, we have $N_i = N'_j$.

THEOREM 2.4. Let R be a commutative ring with the maximum condition, M an R-module with the minimum condition and with a coprimary decomposition $M = N_1 + \ldots + N_n$, where N_i is a \mathfrak{p}_i-coprimary submodule for $i = 1, \ldots, n$. If the \mathfrak{p}_i are distinct maximal ideals of R, then M has the maximum condition, M is the direct sum of the N_i and $M = N_1 + \ldots + N_n$ is the unique normal coprimary decomposition of M.

PROOF. Suppose $N_1 \cap (N_1 + \ldots + N_{1-1} + N_{1+1} + \ldots + N_n) = N$ is not zero for some i, say $i = 1$. Since $\sqrt{0}: N_1 = \mathfrak{p}_1$, we see $\sqrt{0}: N_2 + \ldots + N_n \supset \mathfrak{p}_2 \ldots \mathfrak{p}_n$. Since $\sqrt{0}: N = \mathfrak{p}_1$ by lemma 2.1, we have $\mathfrak{p}_1 \supset \sqrt{0}: N_2 + \ldots + N_n \supset \mathfrak{p}_2 \ldots \mathfrak{p}_n$.

Since \mathfrak{p}_1 is prime, at least one of $\{ \mathfrak{p}_2, \ldots, \mathfrak{p}_n \}$ is contained in \mathfrak{p}_1. This contradicts with the assumption that the \mathfrak{p}_i are maximal. Therefore we see $N = 0$, and hence M is the direct sum of the N_i. Therefore N_i is not contained in $N_1 + \ldots + N_{i-1} + N_{i+1} + \ldots + N_n$ for $i = 1, \ldots, n$, hence $M = N_1 + \ldots + N_n$ is a normal coprimary decomposition.

Since each \mathfrak{p}_i is minimal among $\{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$, $M = N_1 + \ldots + N_n$ is the unique normal decomposition by lemma 2.3.

Since R has the maximum condition and \mathfrak{p}_1 is $\sqrt{0}: N_1$, we have $\mathfrak{p}_1^{k(1)} N_1 = 0$ for some natural number $k(1)$ for $i = 1, \ldots, n$, hence $\mathfrak{p}_1^{k(1)} \ldots \mathfrak{p}_n^{k(n)} M = 0$. As [4], chap. 4, 2 does, we consider the sequence

$$M \supset \mathfrak{p}_1 M \supset \mathfrak{p}_1^2 M \supset \ldots \supset \mathfrak{p}_1^{k(1)} M \supset \mathfrak{p}_1^{k(1)} \mathfrak{p}_2 M$$

$$\supset \ldots \supset \mathfrak{p}_1^{k(1)} \ldots \mathfrak{p}_n^{k(n)} M = 0.$$

We see that R/\mathfrak{p}_i are fields for $i = 1, \ldots, n$. Therefore
each consecutive two terms have composition series, hence M has the maximum condition by lemma 2.2. We have proved all the assertions of theorem 2.4.

3. THE MAXIMAL IDEAL-PRIMARY IN THE SENSE OF UDA. Let R be a (not necessarily with 1) commutative ring, \mathfrak{p} an ideal of R, M an R-module. When $(0 : x)$ is a \mathfrak{p}-primary ideal for every $0 \neq x \in M$, Uda [3] calls M to be a \mathfrak{p}-primary module. In this section, we show that M is \mathfrak{p}-primary for a maximal \mathfrak{m} in the sense of Uda if and only if Rx is \mathfrak{m}-coprimary for every $0 \neq x \in M$.

LEMMA 3.1. Let R be a commutative ring, \mathfrak{p} a maximal ideal of R, \mathfrak{q} a \mathfrak{p}-primary ideal. Then \mathfrak{p} is the unique maximal ideal containing \mathfrak{q}.

This is contained in proposition 1.3.

PROPOSITION 3.2. Let R be a commutative ring, \mathfrak{p} a maximal ideal, M an R-module. If M is \mathfrak{p}-primary in the sense of Uda, Rx is \mathfrak{p}-coprimary for every $0 \neq x \in M$.

PROOF. Let x be any non-zero element of M. $(0 : x) = \mathfrak{q}$ is a \mathfrak{p}-primary ideal. We see therefore $\sqrt{0 :Rx} = \mathfrak{p}$. Taking an element $a \notin \mathfrak{p}$, we consider an ideal $\mathfrak{u} = aR + \mathfrak{q}$. Since $\mathfrak{q} \subset a \subset \mathfrak{p}$, we have $\mathfrak{u} = R$ by lemma 3.1. Therefore for every $b \in R$, there exist $c \in R$ and $q \in \mathfrak{q}$ such that $b = ac + q$. Since $bx = acx + qx = acx$, we see $Rx \subset aRx$. We have seen that Rx is \mathfrak{p}-coprimary.

PROPOSITION 3.3. Let R be a commutative ring, \mathfrak{p} an ideal of R, M an R-module. If Rx is \mathfrak{p}-coprimary for every $0 \neq x \in M$, then M is \mathfrak{p}-primary in the sense of Uda.

PROOF. Let x be any non-zero element of M. We denote $(0 : x)$ by \mathfrak{q}. Since $\sqrt{0 : Rx} = \mathfrak{p}$, we see $\mathfrak{q} \subset \mathfrak{p}$. It is easy to see that \mathfrak{p} is contained in $\sqrt{\mathfrak{q}}$. Suppose $ab \in \mathfrak{q}$ and $b \notin \mathfrak{p}$ for a, b of R. Since $bx \neq 0$, we have $\sqrt{0 : Rbx} = \mathfrak{p}$. Since $abx = 0$, a belongs to \mathfrak{p}. Therefore \mathfrak{q} is \mathfrak{p}-primary.
By propositions 3.2 and 3.3, we have

THEOREM 3.4. Let R be a commutative ring, \mathfrak{m} a maximal ideal, M an R-module. Then M is \mathfrak{m}-primary in the sense of Uda if and only if Rx is \mathfrak{m}-coprimary for every $0 \neq x \in M$.

REFERENCES

Ryûki Matsuda
Department of Mathematics,
Faculty of Science,
Ibaraki University, Mito.

(Received October 25, 1973)