A NOTE ON THE IDENTITIES OF DEDEKIND RINGS

Author(s)
MATSUDA, Ryuki

Citation
Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 6: 1-2

Issue Date
1974

URL
http://hdl.handle.net/10109/2857

Rights
このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
A NOTE ON THE IDENTITIES OF DEDEKIND RINGS

Ryûki Matsuda

It has been proved that, if a commutative ring R without zero-divisors satisfies the condition of Dedekind rings, R is the usual Dedekind ring with the identity. In this note, we extend the assertion and prove the following:

THEOREM. Let R be a commutative ring all elements of which are not zero-divisors. If every ideal of R is a product of prime ideals ($\neq R$), R has the identity.

PROOF. Let K be the total quotient ring of R. We denote $(R:R)_K$ by R^{-1}. If aR^{-1} coincides with R for all non-zero-divisors a of R, we have

$$R = a^2R^{-1} = aR.$$

Then we have $a = ab$ for some b of R. We see that b is the identity of R. We may suppose therefore that dR^{-1} is a proper subset of R for some non-zero-divisor d of R. Since dR^{-1} is an ideal of R, there exist prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ such that $dR^{-1} = \mathfrak{p}_1 \ldots \mathfrak{p}_n$ ($n \geq 1$). There exist prime ideals $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ also such that $\mathfrak{p}_nR = \mathfrak{q}_1 \ldots \mathfrak{q}_m$. Every \mathfrak{p}_i contains \mathfrak{q}_n and \mathfrak{p}_n contains \mathfrak{q}_j for some j, say $j = 1$. If \mathfrak{p}_nR is a proper subset of \mathfrak{p}_n, we have

$$\mathfrak{p}_nR = \mathfrak{p}_n \mathfrak{q}_2 \ldots \mathfrak{q}_m$$

($m \geq 2$).

Multiplying $d^{-1}R \cdot \mathfrak{p}_1 \ldots \mathfrak{p}_{n-1}$ on the both sides, we have

$$R^2 = R \mathfrak{q}_2 \ldots \mathfrak{q}_m.$$

There arises the contradiction of $R \subset \mathfrak{q}_m$. Therefore \mathfrak{p}_nR coincides with \mathfrak{p}_n. Therefore we have

$$dR^{-1}R = \mathfrak{p}_1 \ldots \mathfrak{p}_nR = \mathfrak{p}_1 \ldots \mathfrak{p}_n = dR^{-1}.$$
Therefore we see that $R^{-1}R$ coincides with R^{-1}. Since $R \supseteq R^{-1}R$ and $1 \in R^{-1}$ by the definition, we see that R contains the identity.

REMARK. There exist rings R which satisfy the conditions of the theorem and has zero-divisors. $\mathbb{Z}/(4)$ is one of the examples.

Ryûki Matsuda
Department of Mathematics,
Faculty of Science,
Ibaraki University, Mito.

(Received October 25, 1973)