<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A lower bound of nilpotency class of the group of self-homotopy classes</td>
</tr>
<tr>
<td>Author(s)</td>
<td>OSHIMA, Hideaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematical journal of Ibaraki University, 42: 1-2</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10109/1619</td>
</tr>
</tbody>
</table>

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属します。引用、転載、複製等される場合は、著作権法を遵守してください。
A lower bound of nilpotency class of the group of self-homotopy classes

Hideaki Ōshima

We work in the category of path-connected topological spaces with nondegenerate base points. If G is a topological group (or a group-like space) whose unit is the base point and X is a space, then the set $[X, G]$ of homotopy classes of based maps from X to G inherits a group structure from G. We have been interested in the group $H(G) = [G, G]$. Let $\text{nil}(\Gamma)$ be the nilpotency class of a group Γ and $X \times n$ the product space $X \times \cdots \times X$ (n factors) for an integer $n \geq 1$. The purpose of this note is to prove

Proposition. If G is not homotopy nilpotent, then

$$\text{nil}(H(G \times n)) \geq \max\{n, \text{nil}(H(G))\}. \quad (1)$$

It follows from [5, 6, 8] that a connected Lie group is not homotopy nilpotent if and only if it has torsion in homology. Hence, for example, we have $\text{nil}(H(G_2 \times n)) \geq n$ from (1), where G_2 is the exceptional Lie group of rank 2. Notice that $G_2 \times n$ is simply connected and not simple when $n \geq 2$. On the other hand, the main theorem of [1] says that $\text{nil}(H(\text{PU}(p))) \geq n$ provided p is a prime number $\geq n + 2$. Here PU(p) is the projective unitary group of order p and so it is simple and not simply connected.

Let $T^n(X)$ be the subspace of X^n consisting of all points, at least one of whose coordinates is the base point. Let $j_n : T^n(X) \to X^n$ be the inclusion map, $d_{n,X} : X \to X^n$ the diagonal map, and $\text{cat}(X)$ the Lusternik-Schnirelmann category of X defined by Whitehead [2]. Then $\text{cat}(X) < n$ if and only if there is a map $\varphi : X \to T^n(X)$ such that $j_n \circ \varphi$ is homotopic to $d_{n,X}$. Let $c_n : G^n \to G$ be the iterated commutator map, that is, $c_1 = \text{id}_G$ (the identity map), $c_2(x, y) = [x, y] = xxy^{-1}y^{-1}$, and $c_n = c_2 \circ (c_{n-1} \times \text{id}_G)$ for $n \geq 3$. We define $\text{hpnil}(G)$ to be the least integer n such that c_{n+1} is nullhomotopic. If there is no such integer, we define $\text{hpnil}(G) = \infty$. Then G is homotopy nilpotent if and only if $\text{hpnil}(G)$ is finite.

Given maps $f_1, f_2, \ldots, f_n : X \to G$, we have

$$[[\ldots [[f_1, f_2], f_3], \ldots], f_n] = c_n \circ (f_1 \times \cdots \times f_n) \circ d_{n,X}. \quad (2)$$

Received 2 June, 2009.

2000 Mathematics Subject Classification. Primary 55P10; Secondary 55Q05.

Key Words and Phrases. Lie group, homotopy nilpotent, nilpotency class.

* Supported by Grant-in-Aid for Scientific Research (C) 18540064.

*Ibaraki University, Mito, Ibaraki 310-8512, Japan. (ooshima@mx.ibaraki.ac.jp)
Hence we readily obtain the following well-known inequality [7].
\[
\text{nil}([X,G]) \leq \min \{ \text{cat}(X), \text{hpnil}(G) \}.
\] (3)

Since \([X,G^x] \cong [X,G] \oplus \cdots \oplus [X,G] (n \text{ factors})\), we have
\[
\text{nil}([X,G^x]) = \text{nil}([X,G]).
\] (4)

Since \(\text{cat}(X \times Y) \leq \text{cat}(X) + \text{cat}(Y)\) [2], it follows that \(\text{cat}(G^x) \leq n \cdot \text{cat}(G)\). Let \(\text{pr}_i : G^x \to G\) be the projection to the \(i\)-th factor (\(1 \leq i \leq n\)). Since \(\text{pr}_i^* : \mathcal{H}(G) \to \mathcal{H}(G^x)\) is a monomorphism, we have \(\text{nil}(\mathcal{H}(G)) \leq \text{nil}(\mathcal{H}(G^x))\). Hence we have
\[
\text{nil}(\mathcal{H}(G)) \leq \text{nil}(\mathcal{H}(G^x)) \leq \min \{ n \cdot \text{cat}(G), \text{hpnil}(G) \}.
\] (5)

Proof of Proposition. Suppose that \(G\) is not homotopy nilpotent. It suffices to prove \(\text{nil}(\mathcal{H}(G^x,G)) \geq n\) because of (4) and (5). By the assumption, \(c_n\) is essential for every \(n \geq 1\). When \(n = 1\), it means that \(\mathcal{H}(G)\) is not trivial, that is, \(\text{nil}(\mathcal{H}(G)) \geq 1\). If \(n \geq 2\), then \([\ldots [[\text{pr}_1, \text{pr}_2], \text{pr}_3], \ldots, \text{pr}_{n-1}], \text{pr}_n] = c_n\) by (2) and so \(\text{nil}(\mathcal{H}(G^x,G)) \geq n\). \(\square\)

Remark. Since \(\text{cat}(S^{3 \times 3}) = \text{hpnil}(S^3) = \text{nil}(\mathcal{H}(S^{3 \times 3})) = 3\) for all \(n \geq 3\) by [4, §4], it follows that the assumption “not homotopy nilpotent” is essential in Proposition and that (3) is best possible.

References

